Preface

These notes are in the process of becoming a textbook. The process is quite
unfinished, and the author solicits corrections, criticisms, and suggestions from
students and other readers. Although I have tried to eliminate errors, some un-
doubtedly remain—caveat lector. Many typographical infelicities will no doubt
persist until the final version. More material has yet to be added. Please let
me have your suggestions about topics that are too important to be left out.
I hope that future versions will cover Hopfield nets, Elman nets and other re-
current nets, radial basis functions, grammar and automata learning, genetic
algorithms, and Bayes networks .... I am also collecting exercises and project
suggestions which will appear in future versions.

My intention is to pursue a middle ground between a theoretical textbook
and one that focusses on applications. The book concentrates on the important
ideas in machine learning. I do not give proofs of many of the theorems that I
state, but I do give plausibility arguments and citations to formal proofs. And, I
do not treat many matters that would be of practical importance in applications;
the book is not a handbook of machine learning practice. Instead, my goal is
to give the reader sufficient preparation to make the extensive literature on
machine learning accessible.

Students in my Stanford courses on machine learning have already made
several useful suggestions, as have my colleague, Pat Langley, and my teaching
assistants, Ron Kohavi, Karl Pfleger, Robert Allen, and Lise Getoor.

ix

Some of my plans for additions and
other reminders are mentioned in
marginal notes.



Chapter 1

Preliminaries

1.1 Introduction

1.1.1 What is Machine Learning?

Learning, like intelligence, covers such a broad range of processes that it is dif-
ficult to define precisely. A dictionary definition includes phrases such as “to
gain knowledge, or understanding of, or skill in, by study, instruction, or expe-
rience,” and “modification of a behavioral tendency by experience.” Zoologists
and psychologists study learning in animals and humans. In this book we fo-
cus on learning in machines. There are several parallels between animal and
machine learning. Certainly, many techniques in machine learning derive from
the efforts of psychologists to make more precise their theories of animal and
human learning through computational models. It seems likely also that the
concepts and techniques being explored by researchers in machine learning may
illuminate certain aspects of biological learning.

As regards machines, we might say, very broadly, that a machine learns
whenever it changes its structure, program, or data (based on its inputs or in
response to external information) in such a manner that its expected future
performance improves. Some of these changes, such as the addition of a record
to a data base, fall comfortably within the province of other disciplines and are
not necessarily better understood for being called learning. But, for example,
when the performance of a speech-recognition machine improves after hearing
several samples of a person’s speech, we feel quite justified in that case to say
that the machine has learned.

Machine learning usually refers to the changes in systems that perform tasks
associated with artificial intelligence (AI). Such tasks involve recognition, diag-
nosis, planning, robot control, prediction, etc. The “changes” might be either
enhancements to already performing systems or ab initio synthesis of new sys-
tems. To be slightly more specific, we show the architecture of a typical Al
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“agent” in Fig. 1.1. This agent perceives and models its environment and com-
putes appropriate actions, perhaps by anticipating their effects. Changes made
to any of the components shown in the figure might count as learning. Different
learning mechanisms might be employed depending on which subsystem is being
changed. We will study several different learning methods in this book.
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Figure 1.1: An AI System

One might ask “Why should machines have to learn? Why not design ma-
chines to perform as desired in the first place?” There are several reasons why
machine learning is important. Of course, we have already mentioned that the
achievement of learning in machines might help us understand how animals and
humans learn. But there are important engineering reasons as well. Some of
these are:

e Some tasks cannot be defined well except by example; that is, we might be
able to specify input/output pairs but not a concise relationship between
inputs and desired outputs. We would like machines to be able to adjust
their internal structure to produce correct outputs for a large number of
sample inputs and thus suitably constrain their input/output function to
approximate the relationship implicit in the examples.

e It is possible that hidden among large piles of data are important rela-
tionships and correlations. Machine learning methods can often be used
to extract these relationships (data mining).
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e Human designers often produce machines that do not work as well as
desired in the environments in which they are used. In fact, certain char-
acteristics of the working environment might not be completely known
at design time. Machine learning methods can be used for on-the-job
improvement of existing machine designs.

e The amount of knowledge available about certain tasks might be too large
for explicit encoding by humans. Machines that learn this knowledge
gradually might be able to capture more of it than humans would want to
write down.

e Environments change over time. Machines that can adapt to a changing
environment would reduce the need for constant redesign.

e New knowledge about tasks is constantly being discovered by humans.
Vocabulary changes. There is a constant stream of new events in the
world. Continuing redesign of Al systems to conform to new knowledge is
impractical, but machine learning methods might be able to track much
of it.

1.1.2 Wellsprings of Machine Learning

Work in machine learning is now converging from several sources. These dif-
ferent traditions each bring different methods and different vocabulary which
are now being assimilated into a more unified discipline. Here is a brief listing
of some of the separate disciplines that have contributed to machine learning;
more details will follow in the the appropriate chapters:

e Statistics: A long-standing problem in statistics is how best to use sam-
ples drawn from unknown probability distributions to help decide from
which distribution some new sample is drawn. A related problem is how
to estimate the value of an unknown function at a new point given the
values of this function at a set of sample points. Statistical methods
for dealing with these problems can be considered instances of machine
learning because the decision and estimation rules depend on a corpus of
samples drawn from the problem environment. We will explore some of
the statistical methods later in the book. Details about the statistical the-
ory underlying these methods can be found in statistical textbooks such
as [Anderson, 1958].

e Brain Models: Non-linear elements with weighted inputs
have been suggested as simple models of biological neu-
rons. Networks of these elements have been studied by sev-

eral researchers including [McCulloch & Pitts, 1943, Hebb, 1949,
Rosenblatt, 1958] and, more recently by [Gluck & Rumelhart, 1989,
Sejnowski, Koch, & Churchland, 1988]. Brain modelers are interested
in how closely these networks approximate the learning phenomena of
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living brains. We shall see that several important machine learning
techniques are based on networks of nonlinear elements—often called
neural networks. Work inspired by this school is sometimes called
connectionism, brain-style computation, or sub-symbolic processing.

Adaptive Control Theory: Control theorists study the problem of con-
trolling a process having unknown parameters which must be estimated
during operation. Often, the parameters change during operation, and the
control process must track these changes. Some aspects of controlling a
robot based on sensory inputs represent instances of this sort of problem.
For an introduction see [Bollinger & Duffie, 1988].

Psychological Models: Psychologists have studied the performance of
humans in various learning tasks. An early example is the EPAM net-
work for storing and retrieving one member of a pair of words when
given another [Feigenbaum, 1961]. Related work led to a number of
early decision tree [Hunt, Marin, & Stone, 1966] and semantic network
[Anderson & Bower, 1973] methods. More recent work of this sort has
been influenced by activities in artificial intelligence which we will be pre-
senting.

Some of the work in reinforcement learning can be traced to efforts to
model how reward stimuli influence the learning of goal-seeking behavior in
animals [Sutton & Barto, 1987]. Reinforcement learning is an important
theme in machine learning research.

Artificial Intelligence: From the beginning, Al research has been con-
cerned with machine learning. Samuel developed a prominent early pro-
gram that learned parameters of a function for evaluating board posi-
tions in the game of checkers [Samuel, 1959]. AI researchers have also
explored the role of analogies in learning [Carbonell, 1983] and how fu-
ture actions and decisions can be based on previous exemplary cases
[Kolodner, 1993]. Recent work has been directed at discovering rules
for expert systems using decision-tree methods [Quinlan, 1990] and in-
ductive logic programming [Muggleton, 1991, Lavra¢ & Dzeroski, 1994].
Another theme has been saving and generalizing the results of prob-
lem solving using explanation-based learning [DeJong & Mooney, 1986,
Laird, et al., 1986, Minton, 1988, Etzioni, 1993].

Evolutionary Models:

In nature, not only do individual animals learn to perform better, but
species evolve to be better fit in their individual niches. Since the distinc-
tion between evolving and learning can be blurred in computer systems,
techniques that model certain aspects of biological evolution have been
proposed as learning methods to improve the performance of computer
programs. Genetic algorithms [Holland, 1975] and genetic programming
[Koza, 1992, Koza, 1994] are the most prominent computational tech-
niques for evolution.
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1.1.3 Varieties of Machine Learning

Orthogonal to the question of the historical source of any learning technique is
the more important question of what is to be learned. In this book, we take it
that the thing to be learned is a computational structure of some sort. We will
consider a variety of different computational structures:

e Functions
e Logic programs and rule sets
e Finite-state machines

e Grammars

Problem solving systems

We will present methods both for the synthesis of these structures from examples
and for changing existing structures. In the latter case, the change to the
existing structure might be simply to make it more computationally efficient
rather than to increase the coverage of the situations it can handle. Much of
the terminology that we shall be using throughout the book is best introduced
by discussing the problem of learning functions, and we turn to that matter
first.

1.2 Learning Input-Output Functions

We use Fig. 1.2 to help define some of the terminology used in describing the
problem of learning a function. Imagine that there is a function, f, and the task
of the learner is to guess what it is. Our hypothesis about the function to be
learned is denoted by h. Both f and h are functions of a vector-valued input
X = (x1,x2,...,&;,...,T,) which has n components. We think of h as being
implemented by a device that has X as input and h(X) as output. Both f and
h themselves may be vector-valued. We assume a priori that the hypothesized
function, h, is selected from a class of functions . Sometimes we know that
f also belongs to this class or to a subset of this class. We select h based on a
training set, =, of m input vector examples. Many important details depend on
the nature of the assumptions made about all of these entities.

1.2.1 Types of Learning

There are two major settings in which we wish to learn a function. In one,
called supervised learning, we know (sometimes only approximately) the values
of f for the m samples in the training set, =. We assume that if we can find
a hypothesis, h, that closely agrees with f for the members of =, then this
hypothesis will be a good guess for f—especially if = is large.
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Training Set:
= ={X1, X2, P Xl’ "oy Xm}

X1
A
h(X)
X= X; —>» h —>
;(n heH

Figure 1.2: An Input-Output Function

Curve-fitting is a simple example of supervised learning of a function. Sup-
pose we are given the values of a two-dimensional function, f, at the four sample
points shown by the solid circles in Fig. 1.3. We want to fit these four points
with a function, A, drawn from the set, H, of second-degree functions. We show
there a two-dimensional parabolic surface above the z1, xo plane that fits the
points. This parabolic function, h, is our hypothesis about the function, f, that
produced the four samples. In this case, h = f at the four samples, but we need
not have required exact matches.

In the other setting, termed unsupervised learning, we simply have a train-
ing set of vectors without function values for them. The problem in this case,
typically, is to partition the training set into subsets, =1, ..., =g, in some ap-
propriate way. (We can still regard the problem as one of learning a function;
the value of the function is the name of the subset to which an input vector be-
longs.) Unsupervised learning methods have application in taxonomic problems
in which it is desired to invent ways to classify data into meaningful categories.

We shall also describe methods that are intermediate between supervised
and unsupervised learning.

We might either be trying to find a new function, A, or to modify an existing
one. An interesting special case is that of changing an existing function into an
equivalent one that is computationally more efficient. This type of learning is
sometimes called speed-up learning. A very simple example of speed-up learning
involves deduction processes. From the formulas A D B and B D C, we can
deduce C' if we are given A. From this deductive process, we can create the
formula A D C—a new formula but one that does not sanction any more con-
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Figure 1.3: A Surface that Fits Four Points

clusions than those that could be derived from the formulas that we previously
had. But with this new formula we can derive C' more quickly, given A, than
we could have done before. We can contrast speed-up learning with methods
that create genuinely new functions—ones that might give different results after
learning than they did before. We say that the latter methods involve inductive
learning. As opposed to deduction, there are no correct inductions—only useful
ones.

1.2.2 Input Vectors

Because machine learning methods derive from so many different traditions, its
terminology is rife with synonyms, and we will be using most of them in this
book. For example, the input vector is called by a variety of names. Some
of these are: input vector, pattern vector, feature vector, sample, example, and
instance. The components, x;, of the input vector are variously called features,
attributes, input variables, and components.

The values of the components can be of three main types. They might
be real-valued numbers, discrete-valued numbers, or categorical values. As an
example illustrating categorical values, information about a student might be
represented by the values of the attributes class, major, sex, adviser. A par-
ticular student would then be represented by a vector such as: (sophomore,
history, male, higgins). Additionally, categorical values may be ordered (as in
{small, medium, large}) or unordered (as in the example just given). Of course,
mixtures of all these types of values are possible.

In all cases, it is possible to represent the input in unordered form by listing
the names of the attributes together with their values. The vector form assumes
that the attributes are ordered and given implicitly by a form. As an example
of an attribute-value representation, we might have: (major: history, sex: male,
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class: sophomore, adviser: higgins, age: 19). We will be using the vector form
exclusively.

An important specialization uses Boolean values, which can be regarded as
a special case of either discrete numbers (1,0) or of categorical variables ( True,
False).

1.2.3 Outputs

The output may be a real number, in which case the process embodying the
function, h, is called a function estimator, and the output is called an output
value or estimate.

Alternatively, the output may be a categorical value, in which case the pro-
cess embodying h is variously called a classifier, a recognizer, or a categorizer,
and the output itself is called a label, a class, a category, or a decision. Classi-
fiers have application in a number of recognition problems, for example in the
recognition of hand-printed characters. The input in that case is some suitable
representation of the printed character, and the classifier maps this input into
one of, say, 64 categories.

Vector-valued outputs are also possible with components being real numbers
or categorical values.

An important special case is that of Boolean output values. In that case,
a training pattern having value 1 is called a positive instance, and a training
sample having value 0 is called a negative instance. When the input is also
Boolean, the classifier implements a Boolean function. We study the Boolean
case in some detail because it allows us to make important general points in
a simplified setting. Learning a Boolean function is sometimes called concept
learning, and the function is called a concept.

1.2.4 Training Regimes

There are several ways in which the training set, =, can be used to produce a
hypothesized function. In the batch method, the entire training set is available
and used all at once to compute the function, h. A variation of this method
uses the entire training set to modify a current hypothesis iteratively until an
acceptable hypothesis is obtained. By contrast, in the incremental method, we
select one member at a time from the training set and use this instance alone
to modify a current hypothesis. Then another member of the training set is
selected, and so on. The selection method can be random (with replacement)
or it can cycle through the training set iteratively. If the entire training set
becomes available one member at a time, then we might also use an incremental
method—selecting and using training set members as they arrive. (Alterna-
tively, at any stage all training set members so far available could be used in a
“batch” process.) Using the training set members as they become available is
called an online method. Online methods might be used, for example, when the



1.3. LEARNING REQUIRES BIAS 9

next training instance is some function of the current hypothesis and the previ-
ous instance—as it would be when a classifier is used to decide on a robot’s next
action given its current set of sensory inputs. The next set of sensory inputs
will depend on which action was selected.

1.2.5 Noise

Sometimes the vectors in the training set are corrupted by noise. There are two
kinds of noise. Class noise randomly alters the value of the function; attribute
noise randomly alters the values of the components of the input vector. In either
case, it would be inappropriate to insist that the hypothesized function agree
precisely with the values of the samples in the training set.

1.2.6 Performance Evaluation

Even though there is no correct answer in inductive learning, it is important
to have methods to evaluate the result of learning. We will discuss this matter
in more detail later, but, briefly, in supervised learning the induced function is
usually evaluated on a separate set of inputs and function values for them called
the testing set . A hypothesized function is said to generalize when it guesses
well on the testing set. Both mean-squared-error and the total number of errors
are common measures.

1.3 Learning Requires Bias

Long before now the reader has undoubtedly asked why is learning a function
possible at all? Certainly, for example, there are an uncountable number of
different functions having values that agree with the four samples shown in Fig.
1.3. Why would a learning procedure happen to select the quadratic one shown
in that figure? In order to make that selection we had at least to limit a priori
the set of hypotheses to quadratic functions and then to insist that the one we
chose passed through all four sample points. This kind of a priori information
is called bias, and useful learning without bias is impossible.

We can gain more insight into the role of bias by considering the special case
of learning a Boolean function of n dimensions. There are 2" different Boolean
inputs possible. Suppose we had no bias; that is  is the set of all 22" Boolean
functions, and we have no preference among those that fit the samples in the
training set. In this case, after being presented with one member of the training
set and its value we can rule out precisely one-half of the members of H—those
Boolean functions that would misclassify this labeled sample. The remaining
functions constitute what is called a “version space;” we’ll explore that concept
in more detail later. As we present more members of the training set, the graph
of the number of hypotheses not yet ruled out as a function of the number of
different patterns presented is as shown in Fig. 1.4. At any stage of the process,
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half of the remaining Boolean functions have value 1 and half have value 0 for
any training pattern not yet seen. No generalization is possible in this case
because the training patterns give no clue about the value of a pattern not yet
seen. Only memorization is possible here, which is a trivial sort of learning.

IHVI = no. of functions not ruled out

Iog2|HV|
2N - 2N - |
/ (generalization is not possible)
0 } >

j = no. of labeled
patterns already seen

Figure 1.4: Hypotheses Remaining as a Function of Labeled Patterns Presented

But suppose we limited H to some subset, H., of all Boolean functions.
Depending on the subset and on the order of presentation of training patterns,
a curve of hypotheses not yet ruled out might look something like the one
shown in Fig. 1.5. In this case it is even possible that after seeing fewer than
all 2" labeled samples, there might be only one hypothesis that agrees with
the training set. Certainly, even if there is more than one hypothesis remaining,
most of them may have the same value for most of the patterns not yet seen! The
theory of Probably Approzimately Correct (PAC) learning makes this intuitive
idea precise. We'll examine that theory later.

Let’s look at a specific example of how bias aids learning. A Boolean function
can be represented by a hypercube each of whose vertices represents a different
input pattern. We show a 3-dimensional version in Fig. 1.6. There, we show a
training set of six sample patterns and have marked those having a value of 1 by
a small square and those having a value of 0 by a small circle. If the hypothesis
set consists of just the linearly separable functions—those for which the positive
and negative instances can be separated by a linear surface, then there is only
one function remaining in this hypothsis set that is consistent with the training
set. So, in this case, even though the training set does not contain all possible
patterns, we can already pin down what the function must be—given the bias.
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IHVI = no. of functions not ruled out

logolH, |

depends on order
of presentation

0 —>
0 2n

j = no. of labeled
patterns already seen

Figure 1.5: Hypotheses Remaining From a Restricted Subset

Machine learning researchers have identified two main varieties of bias, ab-
solute and preference. In absolute bias (also called restricted hypothesis-space
bias), one restricts H to a definite subset of functions. In our example of Fig. 1.6,
the restriction was to linearly separable Boolean functions. In preference bias,
one selects that hypothesis that is minimal according to some ordering scheme
over all hypotheses. For example, if we had some way of measuring the complezx-
ity of a hypothesis, we might select the one that was simplest among those that
performed satisfactorily on the training set. The principle of Occam’s razor,
used in science to prefer simple explanations to more complex ones, is a type
of preference bias. (William of Occam, 1285-71349, was an English philosopher
who said: “non sunt multiplicanda entia practer necessitatem,” which means
“entities should not be multiplied unnecessarily.”)

1.4 Sample Applications

Our main emphasis in this book is on the concepts of machine learning—mnot
on its applications. Nevertheless, if these concepts were irrelevant to real-world
problems they would probably not be of much interest. As motivation, we give
a short summary of some areas in which machine learning techniques have been
successfully applied. [Langley, 1992] cites some of the following applications and
others:

a. Rule discovery using a variant of ID3 for a printing industry problem
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Figure 1.6: A Training Set That Completely Determines a Linearly Separable
Function

[Evans & Fisher, 1992].

b. Electric power load forecasting using a k-nearest-neighbor rule system
[Jabbour, K., et al., 1987].

c. Automatic “help desk” assistant using a nearest-neighbor system
[Acorn & Walden, 1992].

d. Planning and scheduling for a steel mill using ExpertEase, a marketed
(ID3-like) system [Michie, 1992].

e. Classification of stars and galaxies [Fayyad, et al., 1993].

Many application-oriented papers are presented at the annual conferences
on Neural Information Processing Systems. Among these are papers on: speech
recognition, dolphin echo recognition, image processing, bio-engineering, diag-
nosis, commodity trading, face recognition, music composition, optical character
recognition, and various control applications [Various Editors, 1989-1994].

As additional examples, [Hammerstrom, 1993] mentions:

a. Sharp’s Japanese kanji character recognition system processes 200 char-
acters per second with 99+% accuracy. It recognizes 3000+ characters.

b. NeuroForecasting Centre’s (London Business School and University Col-
lege London) trading strategy selection network earned an average annual
profit of 18% against a conventional system’s 12.3%.
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c. Fujitsu’s (plus a partner’s) neural network for monitoring a continuous
steel casting operation has been in successful operation since early 1990.

In summary, it is rather easy nowadays to find applications of machine learn-
ing techniques. This fact should come as no surprise inasmuch as many machine
learning techniques can be viewed as extensions of well known statistical meth-
ods which have been successfully applied for many years.

1.5 Sources

Besides the rich literature in machine learning (a small part of
which is referenced in the Bibliography), there are several text-
books  that are worth mentioning [Hertz, Krogh, & Palmer, 1991,
Weiss & Kulikowski, 1991, Natarjan, 1991, Fu, 1994, Langley, 1996].
[Shavlik & Dietterich, 1990, Buchanan & Wilkins, 1993] are edited vol-
umes containing some of the most important papers. A survey paper by
[Dietterich, 1990] gives a good overview of many important topics. There are
also well established conferences and publications where papers are given and
appear including:

e The Annual Conferences on Advances in Neural Information Processing
Systems

e The Annual Workshops on Computational Learning Theory
e The Annual International Workshops on Machine Learning

e The Annual International Conferences on Genetic Algorithms

(The Proceedings of the above-listed four conferences are published by
Morgan Kaufmann.)

e The journal Machine Learning (published by Kluwer Academic Publish-
ers).

There is also much information, as well as programs and datasets, available over
the Internet through the World Wide Web.

1.6 Bibliographical and Historical Remarks

To be added. Every chapter will
contain a brief survey of the history
of the material covered in that
chapter.



