Capitulo 1

Introduccion a las ciencias
computacionales

1.1. Conceptos y fundamentos

La investigacién cientifica se ve a menudo limitada por la capacidad del investigador para observar el
fenémeno en estudio, o para analizar datos y realizar inferencias que confirmen sus hipotesis de trabajo. Sin
embargo, a lo largo de la historia de la ciencia, el ser humano ha ideado formas para vencer esas limitaciones.

Por ejemplo, el genoma humano es conocido gracias al uso de computadores para procesar la enorme can-
tidad de informacion derivada de sus elementos constitutivos. El estudio de la estructura y el comportamiento
molecular de agentes patégenos, mediante computadoras, ha permitido caracterizar algunas enfermedades
y disenar tratamientos personalizados efectivos. Nuevos materiales para la industria han sido disenados con
base en modelos y simulaciones computacionales de sus elementos a escala molecular. Los efectos del cam-
bio climatico son mejor comprendidos ahora gracias a la simulacién del intercambio de carbono, que seria
imposible estimar sin un computador.

Estos y otros ejemplos muestran céomo la integracién de diversas disciplinas y las tecnologias computacio-
nales permite extender los limites de la ciencia. Usamos el término Ciencias Computacionales para referirnos
en forma conjunta a estas areas convergentes, extendidas o mejoradas con el uso de herramientas compu-
tacionales. Pero la nocién de las ciencias computacionales no considera solamente el uso de esas herramientas.
La investigacion de un fendémeno natural comienza con la construcciéon de modelos matematicos, que luego
son traducidos en programas eficientes para ser ejecutados en computadoras de alto rendimiento.

1.2. Motivacion y Justificaciéon

Las ciencias computacionales utilizan y necesitan del modelado y la simulacién computacional. En térmi-
nos sencillos podemos definir un modelo (cientifico) como una representacién de un fenémeno, sistema o
proceso en algin lenguaje formal (matemético), que describe y explica sus elementos caracteristicos asi co-
mo las relaciones entre ellos. La tarea de modelado requiere de la sintesis y representacién del conocimiento
de expertos y de las observaciones realizadas del fenémeno, para permitir cuantificar, visualizar y simular
la dindmica y las propiedades de interés de un problema particular en un dominio de trabajo especifico.
Los productos del procesamiento de ese modelo pueden ayudar a caracterizar y comprender el fenémeno en
estudio.

El modelo constituye, entonces, una explicacién cientifica y permite simular el proceso o sistema que
representa. Por su complejidad, usualmente se requiere de un computador para ejecutar estas simulaciones
con alta precisién numérica en un tiempo razonable.

La relevancia cientifica de un modelo puede ser estimada a partir de varias métricas. Algunos ejemplos de
estas son la capacidad explicativa de las relaciones causales en el fendmeno observado; el nivel de isomorfismo
entre el objeto o fenémeno modelado y el modelo mismo; la capacidad predictiva para dar cuenta de instancias



futuras del fenémeno; y el nivel de granularidad o de detalle o generalidad en el cual el modelo describe el
fenémeno de interés.

En este capitulo nos interesa considerar modelos computacionales de fenémenos o procesos naturales, es
decir, modelos cuyo diseno considera las caracteristicas y restricciones propias de una maquina computacional
capaz de simularlos. En particular, el espacio (memoria) para representar el fenémeno, y el tiempo de
procesamiento (cantidad de instrucciones).

Un modelo computacional debe satisfacer dos propiedades béasicas. Primero, debe ser efectivo, es decir,
proveer en efecto una solucién a un problema dado. Segundo, debe ser eficiente en el uso de los recursos
computacionales ya mencionados. La eficiencia es mayor en el tanto que el tiempo ocioso de los recursos
computacionales utilizados es menor.

También interesa responder otras preguntas acerca del problema a modelar y del método a utilizar para
resolverlo. Primero, es necesario determinar si el problema a modelar es computable, es decir, si es posible
construir un modelo computacional efectivo. Segundo, interesa conocer la complejidad del problema, para
de ahi estimar si serd posible producir eficientemente soluciones al mismo. Tercero, es relevante saber si el
modelo es escalable, esto es, si al incrementar el tamano o la dimensionalidad del problema, el modelo sigue
ayudando a resolver el problema en un tiempo razonable, o en otras palabras, si el método es estable al
escalamiento del problema. Finalmente, es relevante determinar si el modelo es tratable, esto es, si es posible
llevar a cabo la simulacién con los recursos computacionales de tiempo y espacio disponibles.

En lo sucesivo nos referiremos a modelos computacionales computables y tratables.

1.2.1. Antecedente: preguntas fundamentales de la Ciencia de la Computacién

La computacion utiliza maquinas para resolver problemas. Una méquina computacional es una instancia
de un sistema formal, es decir, la implementacién de un modelo matemético en un medio computacional [28].

Una pregunta valida en este contexto es si para todo sistema formal existe una méquina computacional
equivalente, esto es, con la misma capacidad de representacién e inferencia. Es decir, que se desea determinar
si es posible obtener respuestas de la maquina a cualquier pregunta acerca del universo de discurso del
modelo.

En el dominio de conocimiento que nos ocupa, el de las ciencias computacionales, un modelo matematico
describe un proceso fisico. Una pregunta de alta relevancia relacionada con esta aseveracion, es si se cumple
la tesis de Turing, Church y Deutsch[I5], que dice que una maquina computacional universal puede simular
cualquier sistema fisico. Si se cumple, el problema fundamental de las ciencias computacionales consiste en
determinar qué maquinas computacionales pueden simular los procesos que interesa comprender.

Un caso ejemplar interesante de investigacién cientifica computacional es el modelo de generacién y
propagacién de potenciales de accién, de Hodgkin y Huxley [24]. Este modelo se origina en observaciones
experimentales, y utiliza ecuaciones que describen las relaciones de cambio entre componentes. El nivel de
especificidad hace necesario el uso de una computadora, aunque no contar con una en el afno 1952 no fue un
impedimento para los autores.

Un ejemplo maés reciente es el descubrimiento del genoma humano, proyecto de méas de una década, que
utilizé los mejores supercomputadores de la época (1990-2003) para descubrir la estructura completa del
genoma. Otro ejemplo es el enorme aumento en la capacidad de prediccion del clima, a pesar de que la
efectividad de los métodos actuales esta todavia restringida a espacios geograficos muy reducidos y ventanas
de prediccién muy cortas, o sus predicciones son demasiado generales para tener alguna utilidad en zonas
geograficas restringidas.

1.2.2. Hacia un cambio de paradigma de la investigacion cientifica

La ciencia computacional es un area interdisciplinaria que se encuentra en la frontera entre las ciencias
bésicas, la ciencia de la computacién y la matematica. El término ciencia computacional es amplio e involucra
el desarrollo de sistemas, modelos, algoritmos, simulaciones y soluciones a problemas concretos de las ciencias.

En los ultimos anos, la investigacion cientifica se ha orientado hacia el trabajo multi- e interdisciplinario;
conforme avanza el conocimiento en cada campo, surge cada vez mas la necesidad de interactuar con otras
disciplinas en busca de teorias, métodos, técnicas y herramientas que complementen las de la disciplina propia.
Un efecto colateral de ese proceso es la integraciéon metodoldgica de las distintas disciplinas involucradas.



Esto hace que el trabajo colaborativo entre investigadores de distintas areas se convierta en algo im-
prescindible. La ciencia de la computacién provee a esos investigadores recursos y herramientas para la
comunicacion, el andlisis, la representaciéon, la administracién y el procesamiento de datos, que hacen posi-
ble que los procesos de investigacién sean més dgiles y productivos. Ademds de permitir procesar grandes
voliimenes de datos para su analisis, la computacién puede también contribuir a la creacién y ejecucién de
experimentos y la elaboracién de teorias a partir de los resultados del modelado computacional, la simulacién
y la visualizacién cientifica45].

Algunos ejemplos de las clases de problemas en los que la computacién puede contribuir incluyen pro-
blemas cuyo fenémeno de estudio es inaccesible o de dificil acceso, por ejemplo la dindmica de los sistemas
planetarios o en general de la materia en el universo[4]; la funcién cerebral[38]; el modelado de las interaccio-
nes fisicas y quimicas en el nivel molecular[20]; los eventos geoldgicos y climéticos, y muchos otros procesos
naturales.

Un concepto relevante para la tarea de modelado de tales procesos es el de sistema cadtico. Un sistema
es considerado cadtico si el problema de predecir su comportamiento es complejo o intratable.[2]

En particular, un modelo computacional pueden volverse intratable cuando el sistema que representa es
cadtico. En particular interesa modelar problemas complejos, esto es, aquellos con muchos interesados en su
solucién pero con objetivos distintos, posiblemente conflictivos, con muchas variables por considerar, para
los que parece nunca haber una solucién éptima; por el contrario, la bisqueda de una mejor solucién es un
problema continuo y permanente; y finalmente problemas para los que la experimentaciéon es sumamente
costosa o del todo imposible.

Otro factor limitante de un modelo computacional de un sistema o proceso fisico es el modelo matemético
subyacente. Los sistemas continuos, por ejemplo los fluidos, son cominmente modelados utilizando sistemas
de ecuaciones diferenciales. Pero la solucién computacional de un sistema de ecuaciones diferenciales puede
ser muy demandante y costosa en tiempo de procesamiento.

El incremento en el uso de las computadoras para resolver esos tipos de problemas ha volcado la atencién
hacia el desarrollo de métodos numéricos que puedan hacer los calculos necesarios de manera precisa y
eficiente.

1.2.3. Caracterizacién de la ciencia moderna

La ciencia moderna es altamente inclusiva y transdisciplinaria. Los problemas abiertos en la actualidad
pueden clasificarse en las escalas "muy grande” o "muy pequeno”, como la astrofisica, la vulcanologia, la
ciencia de materiales o la neurociencia. Estas y otras dreas que requieren de mucho trabajo colaborativo se
encuentran en las listas de prioridad de muchos centros de investigacién en todo el mundo. Algunas de las
caracteristicas que describen este conjunto de disciplinas son las siguientes:

= Demandan conocimiento altamente especializado y de dreas relacionadas.
= Las soluciones se construyen en forma colaborativa.
= Utilizan métodos que integran otros de distintas disciplinas.

= La experimentacion tradicional, por ejemplo, en un laboratorio en forma aislada, es compleja, ya sea
por el alto costo financiero, el riesgo o la imposibilidad de acceso al objeto de estudio.

= Se benefician del modelado matematico y computacional.

El marco de trabajo de la investigacién cientifica moderna retine muchas disciplinas y enfoques, pero
con particular énfasis se resalta la necesidad de crear modelos y realizar simulaciones computacionales en
multiples escalas, es decir, en multiples niveles de abstraccion de los procesos en estudio. En la seccion se
menciona un ejemplo de esto en el dominio de la quimica computacional.



1.3. Aplicaciones de las Ciencias Computacionales

1.3.1. Ciencias de la Computacion

Las ciencias computacionales se caracterizan por incorporar métodos matematicos y computacionales en
la resolucién de problemas. Esto hace imprescindible para los investigadores de las disciplinas de aplicacién
involucrarse en el proceso de modelado computacional.

La Ciencia de la Computacién estudia los métodos formales para la resolucién de problemas y sus pro-
piedades computacionales. Esto incluye desde el estudio de méquinas, vistas éstas como sistemas formales,
hasta su diseno, implementacién y validacién.

De acuerdo con la IEEEE y la ACMEL la siguiente es la lista de areas del conocimiento relacionadas
con las Ciencias Computacionales, que deben integrar el programa educativo bésico de las Ciencias de la
Computacion [37]:

= Algoritmos y complejidad: andlisis y diseno de soluciones algoritmicas y sus propiedades computacio-
nales.

» Arquitectura y organizacion: jerarquia de memoria de una computadora y su impacto en el disefio de
programas.

= Estructuras discretas: estudio de sistemas no continuos esenciales para la teoria y el modelado compu-
tacional (grafos y conjuntos).

n Sistemas inteligentes: disefio de métodos capaces de realizar tareas en forma auténoma.

= Redes y comunicaciones: métodos que permiten establecer vinculos entre maquinas, por ejemplo para
envio de datos.

n Sistemas operativos: estudio de la asignacién éptima de recursos computacionales y el disefio de sistemas
que realizan esta labor.

s Computacion paralela y distribuida: estudio y diseno de sistemas capaces de realizar méas de una ins-
truccion por unidad de tiempo.

= Lenguajes de programacion: involucra el conocimiento de métodos formales para el diseno y creacién
de programas, desde el nivel gramatical hasta el de compilacién y ejecucién.

Cabe destacar que la matematica es un area del conocimiento fundamental y transversal a la lista an-
terior. El curriculo universitario de las ciencias de la computacién es variado e incluye por lo general otros
temas adicionales, como la ética y responsabilidad social, o la seguridad informética. La lista de arriba in-
cluye solamente aquellas areas del conocimiento que se consideran esenciales para el ejercicio de las ciencias
computacionales. El investigador de cualquiera de estas ciencias debe incorporar, con suficiente profundidad,
los temas de esa lista.

Para el diseno de modelos o métodos computacionales es importante considerar la complejidad de los
algoritmos que los resuelven, ya que un modelo debe ser tratable, es decir, producir resultados en un tiem-
po y haciendo uso de espacio razonables. Las diferentes arquitecturas computacionales y los lenguajes de
programacion imponen restricciones fisicas y logicas de representacién numeérica y de procesamiento, que
pueden producir errores como el redondeo o el truncamiento.

Por otro lado, muchas tareas pueden automatizarse mediante métodos de la inteligencia artificial, comtinmen-
te utilizados para la resolucién de problemas complejos en tareas como la clasificacion, la busqueda, o la
optimizacién. Algunos buenos ejemplos de textos introductorios al campo de la inteligencia artificial pueden
son [5], [10], y més recientemente [35]. En las dos dltimas décadas se ha visto un crecimiento considerable en
la cantidad de investigaciones de las ciencias computacionales en las que se utilizan métodos de la inteligencia
artificial para proveer soluciones cualitativas o aproximadas a sus preguntas de investigacion.

Institute of Electrical and Electronic Engineering, http://www.ieee.org
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Adicionalmente, un conocimiento bésico de sistemas operativos y de redes permite al cientifico compu-
tacional no sélo utilizar las maquinas en forma maés eficiente, sino entender como funciona la asignacién de
recursos como memoria y tiempo de procesador, los cuales contribuyen al rendimiento de un programa. Fi-
nalmente, la mayoria de problemas relevantes en la actualidad son muy complejos y no pueden ser resueltos
eficientemente en maquinas aisladas; se hace imprescindible el uso de la computacién paralela para disenar
soluciones eficientes que permitan resolver problemas de forma més rapida.

Un cientifico computacional debe tener al menos un conocimiento de nivel instrumental de estos temas,
para que se desempene con fluidez y sea capaz de proponer, justificar y trabajar en proyectos multi- y
transdisciplinarios con fuertes componentes computacionales. Si bien la ciencia computacional es primordial-
mente ciencia mejorada con recursos computacionales, el impacto de las ciencias de la computacion en la
gama completa de disciplinas afines es tan alto que no puede ni debe ser ignorado.

1.3.2. Quimica Computacional

El uso de modelos matematicos en la Quimica es importante para producir explicaciones a muchos de
los procesos y estructuras complejas, propios del objeto de estudio de esta ciencia. El trabajo en esta drea
es tan relevante que recientemente se le otorgé el premio Nobel de Quimica a tres cientificos por su trabajo
en simulacién para predecir procesos [1].

Como se mencioné en la seccién anterior, la necesidad de crear modelos y realizar simulaciones compu-
tacionales en multiples escalas es propia de las ciencias computacionales. Un ejemplo de esto es el premio
Nobel de Quimica del ano 2013[I], otorgado a los investigadores Arieh Warshel, Michael Levitt y Martin
Karplus, "por el desarrollo de modelos multiescala para sistemas quimicos complejos”, y ”porque han he-
cho posible el mapeo de los misteriosos caminos de la quimica utilizando computadoras” [I]. Su trabajo ha
contribuido sustancialmente a mejorar los métodos de simulacion y prediccién de procesos quimicos.

Si bien todavia se utilizan métodos no computacionales para realizar algunas de las tareas de recolecciéon
de datos, clasificacién, analisis, visualizacién y optimizacién, cada vez mas la quimica computacional es
utilizada para sustituir esos métodos.

El reto en este contexto consiste en construir modelos tedricos que representen un fenémeno en el mayor
nivel de granularidad posible, es decir, con el mayor detalle posible, pero lo suficientemente simples para ser
reproducidos o simulados en un computador.

A continuacion se ofrece una descripcion general del drea de quimica computacional, una descripciéon mas
detallada puede encontrarse en [I1].

Uno de los problemas de la quimica méas aptos para ser resueltos mediante métodos computacionales es
el andlisis de las propiedades de las moléculas. Conociendo esas propiedades se puede calcular, entre otras
cosas:

= Optimizaciones geométricas.

= Distribuciones de carga.

= Estructuras de transicién.

= Frecuencias.

= Superficies de energia potencial.

» Anclaje.

= Las constantes para reacciones quimicas.

= Calor de las reacciones.

Para modelar el comportamiento y las propiedades de moléculas, la quimica computacional hace uso de
la Mecénica Cudntica, y en particular, de la Ecuacidn de Schrodinger[43]

Para describir la estructura de una molécula se utiliza la formula molecular, que describe el nimero y los
tipos de atomos presentes en una molécula, y los enlaces o ligas entre esos elementos.



Un problema interesante asociado a la estructura molecular consiste en predecir la forma en la que los
atomos se conectan a la molécula, dada su posicion relativa respecto de los demaés. Las estructuras dptimas
necesitan menos energia para formar las conexiones. El problema de predecir una estructura molecular en
condiciones ideales puede ser computacionalmente sencillo. Sin embargo, una prediccién similar para una
estructura molecular compleja, bajo condiciones no ideales (por ejemplo, relacionadas con la energia, o
la temperatura), puede resultar sumamente intensiva computacionalmente, al grado de hacer el problema
intratable.

A pesar de este problema, resolver la tarea utilizando métodos computacionales es mucho mas eficiente
que realizar la prediccién de las estructuras con métodos de laboratorio. Para que la solucién sea tratable,
la estrategia de la quimica computacional consiste en utilizar recursos de computacion de alto rendimiento,
consistentes de recursos computacionales distribuidos y de ejecucién paralela. Dos ejemplos de servicios de
quimica computacional en la web son folding@home[l3] y Rosetta®home[I4]. Estos proyectos utilizan la
computacion en mallas (redes de recursos de procesamiento de datos bajo demanda) para ejecutar procesos
solicitados por sus usuarios.

Debido a que el calculo de la estructura molecular es tan demandante de recursos computacionales,
las estructuras calculadas son almacenadas en bases de datos especializadas, lo que ayuda a simplificar el
trabajo de otros investigadores en el resto del mundo. Los servicios computacionales disponibles, como los
ejemplos mencionados arriba, pueden ser utilizados en investigaciones para identificar propiedades de las
moléculas inherentes a su estructura, o para disenar nuevas moléculas o sustancias en el area de la medicina
personalizada.

Los métodos de la quimica computacional se derivan principalmente de la teoria de la computacion
cudntica. Estos métodos se conocen como métodos ab initio y pueden procesarse utilizando solamente la
ecuacion de Schrodinger. Otros tipos de método necesitan pardmetros de datos obtenidos empiricamente
para poder utilizar los modelos matematicos. Estos métodos se conocen como semiempiricos. Finalmente, se
pueden también encontrar métodos de la mecdnica molecular, que utilizan la fisica clasica para explicar la
dindmica molecular.

En todos los casos los métodos buscan aproximar el modelo al fenémeno real sin pretensiéon de ser
exactos, lo que, como se explicé anteriormente, es una caracteristica de cualquier modelo. Los métodos de la
mecanica molecular son los menos exigentes computacionalmente, mientras que los métodos ab initio son los
mé&s demandantes. Los primeros se utilizan para procesar sistemas moleculares muy grandes y los segundos
para sistemas pequenos o de menor complejidad. Los métodos semiempiricos son ttiles para dar cuenta de
sistemas de tamano intermedio, y requieren de una capacidad computacional mayor a los de la mecédnica
molecular, pero menor a los ab initio. Con més capacidad computacional es posible hacer cédlculos més
precisos, lo que hace apropiada la aplicacién de maquinas y técnicas de la computacién de alto rendimiento
en la quimica computacional.

Para terminar, es importante notar la diversidad de aplicaciones de software desarrollados para la quimi-
ca computacional, en particular para la ejecucion de métodos semiempiricos, para la modelacién y el diseno
de moléculas, para calculos de quimica cuantica, para la fisica de estados sélidos, y para la mecdnica mole-
cular. Algunos de los més utilizados son Gaussian[25], GAMESS (General Atomic and Molecular Electronic
Structure System)[34], MOPAC (Molecular Orbital PACkage)[49], Spartan|26] y Sybyl[9].

1.3.3. Fisica Computacional

La fisica computacional se ocupa de la aplicacion, implementacién, desarrollo y estudio de los métodos
computacionales para la resolucién de problemas de la Fisica. Los origenes de esta disciplina no son claros,
pero por cientos de anos se han realizado calculos de la dindmica del sistema solar y otros sistemas complejos
modelados y estudiados teéricamente.

Uno de los ejemplos maés recientes del desarrollo de la fisica computacional es el Gran Colisionador de Ha-
drones (LHC) construido por la Organizacién Europea para la Investigacién Nuclear (CERN)[19], que genera
un volumen aproximado de 30 Petabytes de datos anualmente. Para poder procesar toda esa informacion,
existe la necesidad de contar con modelos y computadoras con enormes capacidades de procesamiento.

Tradicionalmente la fisica ha sido dividida en la fisica experimental, que observa y estudia los fenémenos
que ocurren en el mundo real, y la fisica tedrica, que utiliza métodos matematicos y modelos simplificados
para explicar lo que se ha observado experimentalmente, para poder realizar predicciones en experimentos



futuros. La fisica computacional combina los métodos de la fisica experimental y la tedrica.[42].

La diversidad de las aplicaciones de la fisica computacional es enorme. Es una disciplina en crecimiento,
y nuevas areas fuera de sus fronteras comunes estan siendo desarrolladas continuamente. La modelacion y
la simulaciéon son dos de los métodos mas utilizadas en esta area, que se basa principalmente en métodos
numéricos y matemaéticos para representar sistemas fisicos del mundo real.

La meteorologia, por ejemplo, es un campo de la fisica que se ha beneficiado mucho de esta metodologia.
Se han desarrollado herramientas de simulacién climatica que ayudan a hacer estudios y predicciones basadas
en un modelo o conjunto de modelos que representan cada uno de los subsistemas que estan involucrados
en el complejo sistema meteoroldgico: sistemas de presion atmosférica, humedad, temperatura, entre muchos
otros.

La atmésfera puede entenderse como el contenedor de un fluido. Desde esta perspectiva, es posible aplicar
modelos de ecuaciones de dinamica de fluidos y de la termodindmica para predecir un estado futuro del fluido
a partir de uno conocido previamente. Estos modelos se usan para hacer predicciones climéticas basadas en
datos reales recolectados.

En esta drea, el modelo de investigacién y prondstico meteorolégico WRF ( Weather Research and Forecast
Model [I8]) es utilizado en gran cantidad de aplicaciones meteorolégicas, desde simulaciones locales con
escalas de decenas de metros, hasta modelos globales con escalas de miles de kilémetros.

Otro ejemplo es la clase de modelos de simulacién oceanogrifica, como ROMS (Regional Ocean Mode-
ling System [44]). ROMS es una combinacién de algoritmos numéricos para realizar simulaciones ocednicas
dindmicas y de alta resoluciéon. Los modelos de circulacién ocednica se basan usualmente en las ecuaciones
de Boussinesq[0], en la hidrodindmica y los balances de masa.

1.3.4. Biologia Computacional

La biologia computacional se refiere al estudio de la vida a través de métodos computacionales. Esta
disciplina tuvo su origen formalmente entre las décadas de los afios 50 y 60[23] del siglo XX. Se dieron al
menos tres eventos que marcaron su inicio:

= La base de datos de secuencias de aminoécidos en crecimiento proveia tanto una fuente de datos asi como
problemas interesantes que no podian ser resueltos sin una computadora (en un tiempo aceptable).

s La idea de que las macromoléculas acarrean informacién tomé fuerza como concepto central de la
biologia molecular. Esto permitié establecer un vinculo conceptual entre la biologia molecular y las
ciencias de la computacién, en particular haciendo uso de la teorfa de la informacién[3].

= La comunidad académica vio la llegada de los computadores digitales de “alta velocidad” que fueron
desarrollados por los programas militares durante la segunda guerra mundial, y su aplicacién en la
modelacién de procesos bioldgicos.

Luego del hallazgo de la estructura tridimensional de la mioglobina por John Kendrew en 1962, Margaret
Dayoff, directora asociada del National Biomedical Research Foundation utiliz6 una serie de programas
escritos en FORTRAN para determinar la secuencia de aminoécidos en proteinas[31]. Usando fragmentos de
péptidos que se traslapan de la digestién parcial de una proteina, los programas de Dayoff calcularon todas
las posibles secuencias que era consistentes con los datos, llegando a la secuencia correcta en unos minutos.

Todos estos datos sobre proteinas fueron utilizados para crear un atlas de proteinas, el Atlas of Protein
Sequence and Structure, que més tarde, en 1983, se convertiria en el Protein Information Resource. Ambas
bases de datos son extensivamente utilizados en investigacion basica en biologia.

A partir de ahi, se han hecho muchos descubrimientos biolégicos utilizando la capacidad de las computado-
ras, en particular métodos de bisqueda por homologia, modelacién y visualizacién de proteinas, y alineado
de secuencias, entre otros.

La Biologia Computacional no se da exclusivamente en el nivel microscépico. Existen problemas en el
nivel macroscépico que pueden ser enfrentados computacionalmente, como por ejemplo estudios sobre nichos
ecolégicos[46] [52][29], investigacién en neurociencial2I][7], y estudios de filogenia[30] [47].

La Biologia Computacional no debe confundirse con la Bioinformatica, aunque ambos campos estan
estrechamente relacionados. La Bioinformatica es una disciplina de la informatica y la computaciéon que



busca proveer herramientas para procesar, almacenar, categorizar y visualizar datos e informacién biolégica.
Se construyen algoritmos para resolver problemas bioldgicos pero el enfoque esta en el método mismo y no
tanto en la aplicacién. El método debe ser validado por la comunidad cientifica en informatica y computacion,
utilizando las métricas del campo.

Existe una gran cantidad de programas de computador para la investigacion en la biologia computacional,
que cabe destacar, La mayoria esta disponible para alguna versién del Sistema Operativo GNU/Linux.
Algunos ejemplos son:

= Rosetta41]: paquete de software para la modelacién y el andlisis computacional de la estructura de
proteinas. Este software ha permito avances importantes en el campo, como el disefio de novo de
proteinas y de enzimas, el acoplamiento de ligandos y la prediccién estructural de macromoléculas.

= openModeller[33]: ambiente para realizar experimentacién de modelacién de nichos ecolégicos. Permite
ejecutar tareas tales como el muestreo de puntos para proyectar modelos en diferentes ambientes, la
lectura de ocurrencia de especies y de datos ambientales. Dispone de méas de diez implementaciones de
algoritmos como GARP, Maxent, ENFA y maquinas de soporte vectorial.

» BLAST[30]: herramienta para encontrar similitudes locales entre secuencias bioldgicas, sean estas de
nucledtidos o aminodcidos. BLAST compara estas secuencias contra bases de datos (remotas o locales) y
calcula estadisticamente los mejores emparejamientos. También se puede utilizar para inferir la relacion
funcional y evolutiva entre secuencias, asi como identificar miembros de una misma familia de genes.

» QIIMEI]]: paquete para la comparacién y el andlisis de comunidades microbianas. Permite al usuario
realizar tareas tales como la eleccién de OTUs, designaciones taxonémicas, la contracciéon de arboles
filogenéticos, entre otros.

» PHYLIP[I6]: software para inferir drboles evolutivos. Dentro de los métodos implementados cuenta
con matrices de distancias, el principio de parsimonia y verosimilitud.

Uno de los ejemplos concretos en el area de la Biologia Computacional es la actividad del Centro para
Biologia Computacional (CCB) [51], localizado en la Universidad de California. El CCB mantiene uno de
los archivos de iméagenes cerebrales mas grandes del mundo, asi como sus meta datos asociados informacién
genética e imagenes derivadas. Estos, y otros datos, deben ser procesados por computadoras con algoritmos
diseniados especificamente para tratar grandes cantidades de datos. Dichos algoritmos son tambien desarro-
llados por el CCB.

1.4. Comentarios finales

Las ciencias computacionales son el resultado de satisfacer las necesidades de procesamiento de datos de
las ciencias tradicionales con las herramientas de la computacion de alto rendimiento.

El potencial de produccién de conocimiento de estas ciencias es por el momento, limitado Unicamente
por los recursos computacionales disponibles: espacio de almacenamiento, y velocidad de procesamiento.

La aparicién de estas nuevas formas de hacer ciencia hace necesario que el cientifico de cualquier disciplina
incorpore a sus conocimientos los principios y métodos fundamentales de la ciencia de la computacion, en
particular para el analisis de la complejidad de los problemas en estudio, para la creacién de modelos cada
vez mas finos y detallados de esos problemas, y para la implementacién y puesta en marcha de métodos para
resolver las tareas bésicas de las ciencias computacionales: la simulacion, la clasificacién, la visualizacién y
la optimizacién, que la ciencia necesita para responder a sus preguntas relevantes. Estas tareas son descritas
en el capitulo siguiente: Taxonomia de las tareas de las ciencias computacionales.



Capitulo 2

Taxonomia de las tareas de las
ciencias computacionales

2.1. Tareas

2.1.1. Introduccion

En esta seccién se exponen algunos de los tipos de tareas mas comunes de las ciencias computacionales.
La lista no pretende ser exhaustiva pero si dar un vistazo general a los aspectos metodolégicos que son
comunes en el area.

2.1.2. Tipos de tarea
Modelacién

Un modelo es una representacién simplificada de un fenémeno del mundo real que se conforma con el
propésito de estudiar ese fendmeno. Esta simplificacién es necesaria debido a que muchos de estos fenémenos
son muy complejos para analizarlos en su totalidad y, debido a esto, es dificil predecir sus comportamientos
en el futuro.

Una de las formas m&as comunes de modelar un fenémeno con fines cientificos es con el uso de las
matematicas. Se parte del supuesto de que un fenémeno puede ser interpretado como una serie de elementos
que se relacionan entre s{ por medio de reglas (operaciones matemadticas) y que existen bases evidentes a
partir de las cuales podemos sustentar estas relaciones (axiomas).

El modelo matematico es entonces la herramienta del cientifico para comprender el fenémeno desde un
punto de vista e interpretacion particular, por lo cual no debe confundirse con el fenémeno en si. Su utilidad
radica en que un modelo bien planteado puede ser utilizado para comprender mejor el fenémeno que se
estudia y realizar predicciones que pueden ser luego corroboradas observando el fenémeno real.

Al ser el modelo una creacién interpretativa de una o mas personas, inspirada en un fenémeno real, este
puede tener diversas caracteristicas que lo colocan en una categorfa en especial. Segtn [45] un modelo puede
clasificarse en las siguientes categorias:

1. El modelo puede ser probabilistico, cuando existe algiin componente de aleatoriedad, o puede ser de-
terministico, cuando los resultados siempre son los mismos dadas las mismas condiciones iniciales.

2. El modelo puede ser estdtico, cuando su definicién no incluye o no necesita la variable de tiempo, o
puede ser dindmico, cuando la variable tiempo es crucial para realizar predicciones sobre un fenémeno.

3. El modelo puede ser continuo, cuando el tiempo es representado como un fenénemo continuo, o discreto,
cuando el tiempo es modelado en unidades discretas.

Un modelo puede encontrarse dentro de alguna o varias de esas categorias segin su concepcién y seguin
el fenémeno que desea representar.



A grandes rasgos, segin [45], los pasos para crear un modelo son los siguientes:

1. Analizar el problema: es necesario saber, en primera instancia, si el problema se puede modelar y, si
lo es, si tiene sentido modelar el fenémeno para solucionar el problema. Este proceso involucra un alto
grado de cuidado en especificar de forma precisa cudl va a ser el objetivo del modelo, sus elementos y
sus caracteristicas. La naturaleza matematica del modelo obliga a ser rigurosos en su definicién, lo que
es crucial para la comprension del problema.

2. Formular el modelo: este paso puede variar segun la naturaleza del problema, pero normalmente el
proceso sigue pasos similares en la mayoria de los casos.

a) Recolectar datos: la observacién del fenémeno que se quiere modelar normalmente debe venir
acompanada de una recolecciéon de datos sistemédtica. Aqui el término observacién tiene una
connotacién amplia, que no se limita a la observacién con los sentidos humanos sino que involucra
instrumentos y técnicas de medicién y recoleccion de datos.

b) Simplificar y determinar variables: para ayudar a resolver el problema, el modelo debe reflejar los
aspectos considerados relevantes del fenémeno. También debe definir con precisién las relaciones
entre las variables y determinar cudles de ellas dependen del comportamiento de otras variables
y cudles son independientes. Finalmente, es importante determinar las unidades de medicién de
las variables del modelo.

¢) Definir ecuaciones y funciones: el modelo consiste finalmente de un conjunto de ecuaciones y
funciones definidas sobre las variables identificadas en el paso anterior.

3. Resolver el modelo: en esta etapa el modelo debe ser implementado en un modelo computacional y
puesto en ejecucion. El resultado podré ser variado: la generacién de un conjunto de datos a partir
una simulacién, una visualizacién, etc. Este es uno de los pasos criticas del proceso de construccion
de un modelo, pues debe asegurarse que la implementaciéon computacional refleja fielmente el modelo
matematico.

4. Validacion y verificacion del modelo: el proceso de validacion del modelo nos dice si las soluciones
efectivamente resuelven el problema que se propuso resolver, mientas que el de verificacién nos dice si
las soluciones que ofrece el modelo son correctas. Con base en esos resultados, se determina si el modelo
debe ser refinado o extendido. Por ejemplo, un modelo de aproximacion numérica puede ser verificado
mediante una metodologia analitica; si los resultados no coinciden se debe considerar la posibilidad
de que la implementacién computacional realice calculos sin la precisién necesaria. De ser cierto, esto
obliga a volver al segundo paso para revisar las variables del modelo, sus unidades, relaciones con otras
variables, y las consideraciones computacionales con las cuales se hizo la implementacién.

5. Documentacion y comunicacion de resultados: como en cualquier proyecto cientifico, el proceso debe ser
adecuadamente documentado y presentado a un piiblico que pueda evaluar el proceso y las conclusiones
de la implementacién y predicciones del modelo. Un modelo exitoso puede luego ser reutilizado en
problemas similares, o méas generales, para complementar el trabajo de otros investigadores.

6. Mantenimiento del modelo: el proceso de investigacion cientifica es continuo y permanente, y debe ser
siempre abierto al debate, la rectificacién, y la inclusion de nuevas fuentes de informacién. Los datos o
variables con base en los cuales se cre6 un modelo pueden luego ser reemplazados por otros datos mas
precisos, o variables més relevantes, que no fueron identificadas originalmente, ya sea por limitaciones
de conocimiento o de naturaleza tecnoldgica. De la misma forma, ya que el modelo es una interpretacion
particular de un fenémeno, un investigador puede encontrar una interpretacién alternativa del mismo
fenémeno que se enfoque en otras variables y en otras metodologias de recoleccion de datos, y adaptar
su modelo correspondientemente. Por otra parte puede ser que la implementacion del modelo se vuelva
obsoleta por un cambios en estandares de hardware o software, lo que implica que el modelo debe ser
adaptado, o renovado, para las caracteristicas de hardware y software actuales. El modelo es, de esta
forma, una representacién dindmica que debe adaptarse a circunstancias y contextos especificos.
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Comunmente un modelo matemético puede ser implementado en una computadora. Los modelos ma-
tematicos pueden considerarse modelos computacionales o convertirse en modelos computacionales. Un
modelo computacional, a diferencia de uno matematico, debe considerar las limitaciones de las méquinas
computacionales como la representacién discreta de datos, el espacio disponible de memoria, el tiempo de
procesamiento, o la arquitectura de la maquina. Por ejemplo, la implementacién computacional de un modelo
matematico que describa un proceso continuo tendrd que comprometerse con un modelo de representacién
discreta del proceso y del tiempo.

Simulacién

En muchos casos la realizacion de experimentos con medios fisicos es muy compleja o imposible, por lo
que el uso de simulaciones computacionales es la mejor opcion.

El modelo matemético provee una formalizacién de lo que se desea representar del fendmeno, mientras que
el modelo computacional provee una version del modelo matematico que puede ser transcrita a un lenguaje
de programacién y puesta a funcionar en una computadora: una simulacién.

Las caracteristicas del modelo usualmente son transferibles a la simulacion. Por ejemplo un modelo estati-
co y probabilistico se traducird a una simulacién con caracteristicas estaticas y probabilisticas. Usualmente
las simulaciones agregan un elemento de aleatoriedad en las entradas o parametros del modelo, lo que les
permite generar cientos o miles de experimentos que ayuden a hacer los resultados més confiables.

Una simulacién bien diseniada puede revelar al usuario aspectos del fenémeno que no habia notado
anteriormente y multiples usuarios pueden llegar a tener diferentes tipos de revelaciones segin su area de
experiencia. Asi, un experto en quimica puede descubrir algo muy distinto a lo que podria observar un
experto en biologia o en fisica en una misma simulacién. Esto es una propiedad que comparten los procesos
de simulacién y visualizacion, y no es extrano ver casos en los que la simulacién y la visualizacion se integran
en un mismo modelo computacional.

Las simulaciones pueden tener muchos usos mas alld de los resultados numéricos que produce o las
revelaciones que promueve. En [48] podemos encontrar algunos ejemplos de uso de las simulaciones:

1. Entrenamiento. Las simulaciones pueden ser utilizadas para entrenar personas en multiples dreas como
la aviacion y la operacién de maquinaria peligrosa.

2. Apoyo en el andlisis estadistico. Una vez validada una simulacién, esta puede ser utilizada para probar
miultiples entradas y salidas y validar predicciones estadisticas. Este es uno de los usos mas comunes
de las simulaciones en las ciencias.

3. Guia de animaciones por computadora. La simulacién puede combinarse con la visualizacién para
observar como una animacion se comporta a partir de los parametros de entrada y su configuracién.

4. Control de procesos en linea. Para un proceso que se estd llevando a cabo en un momento dado, es
a veces necesario predecir su comportamiento en el futuro inmediato. En estos casos la simulacién se
utiliza en paralelo con el proceso y la prediccién debe ser constantemente actualizada.

5. Prediccion de resultados. La prediccién de resultados puede ser incierta debido a la incertidumbre
asociada al modelo y a su implementacion, como en el caso de problemas complejos o cadticos.

6. Prueba y evaluacion de sistemas nuevos. Para sistemas o fenémenos nuevos o de los cuales se conoce
poco, la simulacion puede ser utilizada para su prueba y evaluacién.

7. Apoyo en el andlisis bajo incertidumbre del comportamiento de un sistema. Cuando no es posible saber
a priori como funciona un sistema, se puede utilizar la simulacién para ganar conocimiento sobre el
mismo sin enfocarse necesariamente en los resultados.

8. Mejora de la ensenanza y la educacion. La popularidad de la modelaciéon y de la simulacién en la
ensenanza va en aumento. En algunos casos el proceso de modelacién puede utilizarse como metodologia
didéctica si se utiliza la simulacién para calibrar modelos de fenémenos reales. La metodologia obliga
a los estudiantes a trabajar con las manos en un acercamiento mdas empirico a la comprensién del
fenémeno.
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No siempre realizar simulaciones es garantia de que se tendran las soluciones deseadas o correctas, la
complejidad de los fenémenos reales hace que las simulaciones sean confiables hasta cierto punto, por lo que
es imprescindible tener presentes sus limitaciones. Segin [45] algunas limitaciones de la simulacién son:

1. Toma mucho tiempo o es muy costosa. Incluso cuando la experimentacion con simulaciones salga més
barata que la experimentacién real el proceso de crear la simulacién que puede empezar con todo el
proceso de modelacion puede resultar excesivamente costosa.

2. Usualmente es imposible probar todas las alternativas, dada la gran cantidad de variables y las multiples
combinaciones de sus valores. Para solventar esto usualmente se utilizan heuristicas que guian los valores
que se utilizaran para las variables y las combinaciones que parezcan mas relevantes o reales. Esto puede
dar buenos resultados, pero no es posible garantizar que sean éptimos.

3. Las conclusiones son inciertas. Dado que las simulaciones integran miiltiples elementos que pueden
fallar o presentar errores, es necesario validar con conocimiento experto las conclusiones que se deriven
de la simulacién.

4. No se dispone de datos para la verificacion. Si una simulaciéon hace predicciones de fenémenos con los
que no puede experimentar o recolectar datos directamente, el proceso de verificacién del modelo puede
verse limitado. significado o relevancia.

A pesar de estas limitaciones, la simulacién es una herramienta que se ha vuelto indispensable en muchos
procesos de investigacién cientifica, y ha llegado a sustituir o complementar el proceso de experimentacién
tradicional en el método cientifico.

Clasificacion

La clasificacién es una tarea comun para las personas, y se define como el proceso de asignar un conjunto
de tuplas a una categoria o clase previamente definida. Cada tupla representa un objeto a clasificar, y es el
conjunto de los atributos relevantes de ese objeto. La dimension de una tupa es la cantidad de atributos que
describe.

Los problemas de este tipo estan presentes en practicamente todos los campos del quehacer humano, pero
dada la complejidad de la tarea o por las condiciones del entorno donde se debe desempenar, la clasificacién
debe echar mano de la computacién. Existe muchos ejemplos de esto en problemas de la Microbiologia [40],
el andlisis de imdgenes [22], o la visién por computadora [32], entre otros.

Formalmente, la tarea de clasificacién se define mediante una funcién f : x — y, que mapea una tupla x
a una categoria o clase predefinida y. Esta funcién también se conoce como modelo de clasificacién [50)].

La clasificacién es particularmente til para crear modelos descriptivos o predictivos de un conjunto de
datos:

= Modelo descriptivo: un herramienta explicativa para diferenciar diferentes tuplas de diferentes clases.
Los modelos descriptivos explican qué atributos de los objetos los identifican como miembros de una
clase.

= Modelo predictivo: un herramienta que permite asignar una tupla a una clase, ya sea con base basado en
una descripcién analitica (un modelo) o en una descripcién empirica (basada en datos, observaciones)
del objeto a clasificar.
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Datos
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Datos de Datos dﬁ
A antrenamientos
—
Clasificador
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o Modelo de
Validacion =% clasificacion
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Resultados

Figura 2.1: Modelo general de clasificacion

Una técnica de clasificacion o clasificador es una aproximacion sistematica para la creacién de modelos de
clasificacién a partir de datos de entrada. Existen muchos y diversos clasificadores que pueden ser utilizados en
diferentes problemas de clasificaciéon con resultados variables: arboles de decision, modelos basados en reglas,
redes neuronales artificiales, maquinas de soporte vectorial, modelos de inferencia bayesiana, de agrupamiento
o de clustering, entre otros. Cada uno de ellos tiene caracteristicas particulares que los hacen mejores o
peores dado el problema a tratar. Dos de esas caracteristicas son claves y estan relacionan con los modelos
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mencionados anteriormente: su capacidad para ajustarse a los datos existentes y su capacidad para predecir
clases de tuplas que nunca habia visto antes.
De forma general, los problemas de clasificacion se pueden abordar de la siguiente manera:

1. Hacer una recopilacion de los datos que se desean clasificar.

2. Realizar una segmentacion de los datos en dos conjuntos: uno de entrenamiento y otro de prueba, por
ejemplo asignando 60 % de los datos para el entrenamiento y 40 % para las pruebas.

3. Generar un modelo de clasificacién mediante la aplicacion del clasificador a los datos de entrenamiento.
Es en esta etapa donde se observa la capacidad del modelo para ajustarse a los datos existentes.

4. Ewvaluar el modelo con los datos de prueba. Aqui se evalia la capacidad del modelo para predecir la
clasificacién.

La figura muestra un modelo general para abordar los problemas de clasificacién.

La evaluacion del desempernio del clasificador se puede basar en el porcentaje de datos clasificados correc-
tamente. Estos se pueden representar en una tabla llamada matriz de confusion, como se muestra en la tabla
Existen también otras métricas que se utilizan para medir el desempeno de un clasificador, como la tasa
de error y la precision.

Prediccion
Clase 0 Clase 1 Clase 2
Clase 0 30 5 5
Realidad Clase 1 0 40 0
Clase 2 15 0 25

Figura 2.2: Ejemplo de matriz de confusion

Muchas veces la escogencia de un clasificador depende de la configuracion de los datos a procesar: sus
dimensiones, tipos y tamanos, entre otros. A partir de estas caracteristicas un clasificador puede ser mejor
que otro [39].

Visualizacién

La visualizacién es la tarea de seleccionar, ordenar y presentar datos en una representacién visual[53]. La
presentacién debe ayudar a caracterizar los datos y las relaciones entre ellos. El propésito de la visualizacién
es ayudar para que la interpretacién de la informacion presentada sea mas rapida y clara, y que facilite su
abstraccion.

Una propiedad fundamental de toda visualizacién es su adecuacion. La visualizacién en las ciencias
computacionales se basda en diversas metdforas para el ordenamiento y presentacién de la informacién, es
decir, similes con objetos o procesos naturales o de produccién humana, que por su familiaridad facilitan la
interpretacién adecuada de los datos.

Un ejemplo del poder que puede tener la metafora en la que se basa una visualizaciéon son los mapas.
Considere el fragmento de datos de la figura [2.3] estos son tomas de temperatura de la superficie ocednica
desde varios satélites orbitando el planeta. El conjunto de datos es mucho mayor de lo que muestra en este
fragmento. Interpretar esta tabla puede ser dificil por la cantidad de datos.
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Figura 2.3: Toma de datos satélites de temperatura de la superficie ocednica. Tomado de http://www.class.
ngdc.noaa.gov/saa/products/search?datatype_family=SST100.

Ahora considere el mapa de temperaturas ocednicas [2.4] generado a partir de los datos de la figura [2.3]
Este mapa abstrae de buena manera los datos de la tabla y los muestra en una representacién grafica que
transmite de forma directa la informacién que contiene.
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Figura 2.4: Mapa de temperatura superficial del océano. Tomado de http://www.class.ngdc.noaa.gov/
saa/products/search?datatype_family=SST100.
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Existen tres componentes de toda visualizacién que son criticos para su éxito: la seleccién de datos
relevantes, el mapeo de datos a elementos grdficos y su ordenamiento espacial[50].

Si un conjunto de datos es numeroso, y cada dato es representado por una gran cantidad de atributos, su
visualizacién puede resultar dificil. Para esto es necesario hacer una seleccion, ya sea eliminando o restando
importancia a algunos objetos de la visualizacion. Para escoger un subconjunto de los atributos se utilizan
técnicas de reduccidn de la dimensionalidad, como el andlisis de componentes principales (PCA), la regresién
o las redes neuronales artificiales[I7]. Con los atributos més relevantes es posible producir una visualizacién
con mas significado. Por otro lado, cuando la cantidad de datos es muy alta, es posible que algunos sean
obstruidos y ocultados por otros, lo que hace dificil su despliegue visual. En este tipo de situacién es util
prescindir de algunos de estos datos, por ejemplo haciendo un muestreo o un acercamiento de los datos.

Los objetos a representar en la visualizacién deben ser transformados a elementos gréaficos como puntos,
lineas, colores o formas. Dependiendo del tipo de objeto a representar, se pueden utilizar varias estrategias.
Por ejemplo, si se desea visualizar un solo atributo categérico de los objetos, éstos pueden ser agrupados en
una categoria y ser desplegados como una entrada en una tabla o en una area especial de la pantalla, como
se hace con los graficos de barras. Si el objeto tiene varios atributos, estos pueden ser mostrados como una
fila 0 columna en una tabla o una arista en un grafo. Es posible también que los objetos se presenten como
puntos en un eje de coordenadas; estos puntos puede ser representados como formando figuras geométricas.

Los atributos de los objetos a visualizar pueden ser nominales (nombran o denotan un objeto), ordinales
(hacen referencia a un objeto dentro de un conjunto ordenado), o continuos (se refieren a los valores de
variables continuas del modelo).

Los atributos ordinales y continuos puede ser representados como caracteristicas con orden, como puntos
en ejes de coordenadas, intensidad, color, distancias de radio, anchura o altura. Por cierto, las variables
categoricas del modelo también pueden ser representadas usando esa misma estrategia. Debe considerarse el
caso de las variables nominales que no consideran un orden preestablecido, tales como lugares de nacimiento,
o los nombres de los miembros de una poblacién.

Las relaciones entre atributos también debe mostrarse griaficamente, ya sea de forma explicita o implicita.
Por ejemplo, en un grafo las relaciones entre nodos se denota con una arista entre los mismos. Si se estuviera
visualizando carreteras entre ciudades, y las ciudades fueran nodos, el ancho de la arista, la distancia entre
los 2 nodos y el didmetro de los nodos pueden representar la afluencia de trafico, la distancia entre ciudades
y la cantidad de poblacion de las ciudades respectivamente.

En muchos casos las relaciones entre atributos u objetos se dan implicitamente. Si los objetos se repre-
sentan como puntos en un eje de coordenadas en tres dimensiones, los puntos que se agrupan visualmente
(sin necesidad de un componente gréfico entre ellos) muestran que los valores de sus atributos son similares.

Es dificil asegurar que las relaciones sean facilmente observadas entre elementos graficos; este es uno de
los retos méas grandes de las técnicas de visualizaciones.

La importancia del ordenamiento espacial de los elementos graficos se puede mostrar por medio del
siguiente ejemplo [50]: considere la ﬁgura en la cual se muestra dos veces el mismo grafo. Del lado izquierdo
se despliega una vista del grafo, opuesto la lado derecho, una vista diferente, que separa espacialmente los
componentes conectados.

Figura 2.5: Interpretacién visual de un grafo.
Utilizando esta lineas como bases es posible crear desde visualizaciones sencillas como graficos circula-

res diagramas de caja y bigotes o histogramas los cuales son muy utilizados para visualizar
informacién estadistica de una dimension.

16



Planetary Research & Analysis
FY08 Funds for ROSES 07

Mission Concepts
PSP Program
Planetary Prot
LASER MFRP PGRG

New Horizons at
Jupiter Cosmo

SRLIDAP

DDAP Planetary Astronomy

MDAP
Planetary Atmospheres
Cassini DAP
Quter Planets

ASTER/ASTED Origins

PIDDP PME Astrobiclogy

Total FY 08 Funding $130.5M

Figura 2.6: Gréafico circular: asignaciéon de fondos para Investigaciéon y Andlisis Planetario 2007-
2008, NASA, E.E.U.U. Tomando de http://sciencel.nasa.gov/researchers/sara/division-corner/
planetary-science-division-corner/\
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Figura 2.7: Diagrama de caja y bigotes: Total de bacterias cultivables en las aguas del rio Hudson y el canal
Gowanus. http://seceij.net/seceij/winter12/bio-math_mappin.html
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Figura 2.8: Histograma: tamafio de exoplanetas conocidos, descubiertos por la Misiéon Kepler de la NASA
http://www.nasa.gov/content/sizes-of-known-exoplanets|

Otras visualizaciones mds elaborados como mapas de calor 2.9 o Treemaps [2.10] son utilizados para
visualizar variables en dos dimensiones y son comunes en dreas como biologia o informatica.
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Figura 2.9: Mapa de calor: Péptidos utilizados en tratamientos de neurotoxinas en ratones de laboratorio
http://www.pnnl.gov/science/highlights/highlight.asp?id\unhbox\voidb@x\bgroup\let\unhbox\
voidb@x\setbox\@tempboxa\hbox{6\global\mathchardef\accent@spacefactor\spacefactor}\
accent226\egroup\spacefactor\accent@spacefactor64

Visualizaciones mucho mds complejas como animaciones, imagenes generadas por computadora (render)

de superficies o voltimenes [2.11] o figuras en tres dimensiones son muy llamativas y pueden comunicar
mucha més informacién en un solo vistazo.
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Figura 2.10: Treemap: exportaciones de chile en el 2010 http://atlas.media.mit.edu/explore/tree_map/
hs/export/chl/show/all/2010/

Figura 2.11: Mapa del universo conocido, cada punto representa un cuerpo astronémico identificado. Escala
logaritmica http://www.visualizing.org/gallerigs/ars-electronica-big-picture
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Figura 2.12: Generacién de imagen por computadora en 3D: Modelo de propagacién de ondas sismicas en la
Tierra https://www.tacc.utexas.edu/scivis-gallery/seismic-wave

Con frecuencia es necesario que la visualizaciéon de un proceso o problema no sea una imagen estética,
sino una secuencia de ellas, o un video. Esta forma de visualizacién genera un mayor impacto en el observador
y puede ofrecer una vision més amplia del proceso o problema.

La creacion de una animacién o video incluye la generacion de series de imagenes y, cuando es posible,
una pista de audio que acompana a las mismas.

Dos ejemplos de animaciones son las producidos por el Argonne National Laboratory. La figura 2.13]
muestra una captura de pantalla del estado intermedio de una simulacién de la distribucién de la materia
en el universo, tomando en cuenta la influencia de la energia oscura. La figura [2.14] muestra una toma de
pantalla del flujo de glébulos en sangre, diferenciando los saludables de los enfermos.
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Figura 2.13: Secretos del universo oscuro: Simulando el cielo en Blue Gene/Q http://www.youtube.com/
watch?v=t-o7DU3W7kw
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Figura 2.14: Flujo sanguineo: modelacién y visualizacién multi-escala http://www.youtube.com/watch?v=
OhibGZi8TWs

Finalmente las visualizaciones cientificas, deseablemente, deberian satisfacer los criterios expuestos en
= Enfoque cientifico.
= Representacion del error y la incertidumbre.

» Interaccién eficiente.

= Uso de puntos de vista globales y locales, segtin el contexto.
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Optimizacién

Desde la perspectiva de la computacién cientifica y de la Computacién de Alto Rendimiento (CAR), se
puede hablar de optimizacion del hardware y del software. Esta expresién se refiere al objetivo de mejorar
la utilizacién de los recursos computacionales para maximizar alguna variable de interés en el proceso de
modelacién: mejoramiento de la precisién o de la velocidad en los calculos, ahorro de energia, etc.

Estas estrategias de optimizacion incluyen el mejoramiento del rendimiento del cédigo de un algoritmo
mediante la incorporaciéon de mejoras en el codigo fuente, o el uso de técnicas de computacion paralela, o el
uso de componentes de hardware con mayores capacidades, entre otras.

El objetivo de un problema de optimizacién es encontrar un conjunto de valores de entrada de una funcién
que maximizan o minimizan su valor. Es decir, que dada la funcién

f:V-oR

se busca un valor z; en V tal que f(z;) > f(x) para cualquier otro z, esto es, el mdximo de la funcién
(o, correspondientemente, se busca un valor z; en V tal que f(x;) < f(z) para cualquier otro z, el minimo
de la funcién.

Esta definicién general puede aplicarse en muchas areas para diversos problemas. Dependiendo del con-
texto donde se aplique f, puede llamarse una funcién objetivo (cuyo valor es maximo para la mejor solucién
posible al problema(, una funcién de costo (cuyo valor es minimo para la mejor solucién), una funcién de
utilidad (cuyo valor es méaximo), una funcién de aptitud (también mdximo) o una funcién de energia (para
la que se busca el minimo). [50].

Un problema de optimizacién puede tener multiples objetivos. Por ejemplo, puede ser necesario buscar
una funcién que calcule una reaccién quimica que genere la mayor cantidad de calor, pero que sea estable
en un ambiente determinado. Cualquiera de esas restricciones puede provocar que la otra cambie de forma
contraria a lo que se busca, por lo que puede resultar necesario combinarlas para buscar la solucién 6ptima.
De la misma forma hay problemas de optimizacién para los que no existe una unica solucién, lo que hace
necesario escoger una o unas pocas con base en otros criterios.

En general los métodos de optimizacion pueden clasificarse en aquellos basados en el algoritmo Sim-
plex[12], en algoritmos iterativos, que buscan aproximar poco a poco una solucién éptima y en ocasiones
dependen de un criterio de convergencia de la solucion, o en algoritmos heuristicos, que dependen de expe-
riencias anteriores para guiar la bisqueda de una buena solucion, si no es posible dar con la éptima.

Los problemas de optimizacién son muy frecuentes en areas como la Ingenieria, la Economia, la toma de
decisiones, y la modelacién molecular.
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