
Caṕıtulo 1

Introducción a las ciencias
computacionales

1.1. Conceptos y fundamentos

La investigación cient́ıfica se ve a menudo limitada por la capacidad del investigador para observar el
fenómeno en estudio, o para analizar datos y realizar inferencias que confirmen sus hipótesis de trabajo. Sin
embargo, a lo largo de la historia de la ciencia, el ser humano ha ideado formas para vencer esas limitaciones.

Por ejemplo, el genoma humano es conocido gracias al uso de computadores para procesar la enorme can-
tidad de información derivada de sus elementos constitutivos. El estudio de la estructura y el comportamiento
molecular de agentes patógenos, mediante computadoras, ha permitido caracterizar algunas enfermedades
y diseñar tratamientos personalizados efectivos. Nuevos materiales para la industria han sido diseñados con
base en modelos y simulaciones computacionales de sus elementos a escala molecular. Los efectos del cam-
bio climático son mejor comprendidos ahora gracias a la simulación del intercambio de carbono, que seŕıa
imposible estimar sin un computador.

Estos y otros ejemplos muestran cómo la integración de diversas disciplinas y las tecnoloǵıas computacio-
nales permite extender los ĺımites de la ciencia. Usamos el término Ciencias Computacionales para referirnos
en forma conjunta a estas áreas convergentes, extendidas o mejoradas con el uso de herramientas compu-
tacionales. Pero la noción de las ciencias computacionales no considera solamente el uso de esas herramientas.
La investigación de un fenómeno natural comienza con la construcción de modelos matemáticos, que luego
son traducidos en programas eficientes para ser ejecutados en computadoras de alto rendimiento.

1.2. Motivación y Justificación

Las ciencias computacionales utilizan y necesitan del modelado y la simulación computacional. En térmi-
nos sencillos podemos definir un modelo (cient́ıfico) como una representación de un fenómeno, sistema o
proceso en algún lenguaje formal (matemático), que describe y explica sus elementos caracteŕısticos aśı co-
mo las relaciones entre ellos. La tarea de modelado requiere de la śıntesis y representación del conocimiento
de expertos y de las observaciones realizadas del fenómeno, para permitir cuantificar, visualizar y simular
la dinámica y las propiedades de interés de un problema particular en un dominio de trabajo espećıfico.
Los productos del procesamiento de ese modelo pueden ayudar a caracterizar y comprender el fenómeno en
estudio.

El modelo constituye, entonces, una explicación cient́ıfica y permite simular el proceso o sistema que
representa. Por su complejidad, usualmente se requiere de un computador para ejecutar estas simulaciones
con alta precisión numérica en un tiempo razonable.

La relevancia cient́ıfica de un modelo puede ser estimada a partir de varias métricas. Algunos ejemplos de
estas son la capacidad explicativa de las relaciones causales en el fenómeno observado; el nivel de isomorfismo
entre el objeto o fenómeno modelado y el modelo mismo; la capacidad predictiva para dar cuenta de instancias

1



futuras del fenómeno; y el nivel de granularidad o de detalle o generalidad en el cual el modelo describe el
fenómeno de interés.

En este caṕıtulo nos interesa considerar modelos computacionales de fenómenos o procesos naturales, es
decir, modelos cuyo diseño considera las caracteŕısticas y restricciones propias de una máquina computacional
capaz de simularlos. En particular, el espacio (memoria) para representar el fenómeno, y el tiempo de
procesamiento (cantidad de instrucciones).

Un modelo computacional debe satisfacer dos propiedades básicas. Primero, debe ser efectivo, es decir,
proveer en efecto una solución a un problema dado. Segundo, debe ser eficiente en el uso de los recursos
computacionales ya mencionados. La eficiencia es mayor en el tanto que el tiempo ocioso de los recursos
computacionales utilizados es menor.

También interesa responder otras preguntas acerca del problema a modelar y del método a utilizar para
resolverlo. Primero, es necesario determinar si el problema a modelar es computable, es decir, si es posible
construir un modelo computacional efectivo. Segundo, interesa conocer la complejidad del problema, para
de ah́ı estimar si será posible producir eficientemente soluciones al mismo. Tercero, es relevante saber si el
modelo es escalable, esto es, si al incrementar el tamaño o la dimensionalidad del problema, el modelo sigue
ayudando a resolver el problema en un tiempo razonable, o en otras palabras, si el método es estable al
escalamiento del problema. Finalmente, es relevante determinar si el modelo es tratable, esto es, si es posible
llevar a cabo la simulación con los recursos computacionales de tiempo y espacio disponibles.

En lo sucesivo nos referiremos a modelos computacionales computables y tratables.

1.2.1. Antecedente: preguntas fundamentales de la Ciencia de la Computación

La computación utiliza máquinas para resolver problemas. Una máquina computacional es una instancia
de un sistema formal, es decir, la implementación de un modelo matemático en un medio computacional[28].

Una pregunta válida en este contexto es si para todo sistema formal existe una máquina computacional
equivalente, esto es, con la misma capacidad de representación e inferencia. Es decir, que se desea determinar
si es posible obtener respuestas de la máquina a cualquier pregunta acerca del universo de discurso del
modelo.

En el dominio de conocimiento que nos ocupa, el de las ciencias computacionales, un modelo matemático
describe un proceso f́ısico. Una pregunta de alta relevancia relacionada con esta aseveración, es si se cumple
la tesis de Turing, Church y Deutsch[15], que dice que una máquina computacional universal puede simular
cualquier sistema f́ısico. Si se cumple, el problema fundamental de las ciencias computacionales consiste en
determinar qué máquinas computacionales pueden simular los procesos que interesa comprender.

Un caso ejemplar interesante de investigación cient́ıfica computacional es el modelo de generación y
propagación de potenciales de acción, de Hodgkin y Huxley [24]. Este modelo se origina en observaciones
experimentales, y utiliza ecuaciones que describen las relaciones de cambio entre componentes. El nivel de
especificidad hace necesario el uso de una computadora, aunque no contar con una en el año 1952 no fue un
impedimento para los autores.

Un ejemplo más reciente es el descubrimiento del genoma humano, proyecto de más de una década, que
utilizó los mejores supercomputadores de la época (1990-2003) para descubrir la estructura completa del
genoma. Otro ejemplo es el enorme aumento en la capacidad de predicción del clima, a pesar de que la
efectividad de los métodos actuales está todav́ıa restringida a espacios geográficos muy reducidos y ventanas
de predicción muy cortas, o sus predicciones son demasiado generales para tener alguna utilidad en zonas
geográficas restringidas.

1.2.2. Hacia un cambio de paradigma de la investigación cient́ıfica

La ciencia computacional es un área interdisciplinaria que se encuentra en la frontera entre las ciencias
básicas, la ciencia de la computación y la matemática. El término ciencia computacional es amplio e involucra
el desarrollo de sistemas, modelos, algoritmos, simulaciones y soluciones a problemas concretos de las ciencias.

En los últimos años, la investigación cient́ıfica se ha orientado hacia el trabajo multi- e interdisciplinario;
conforme avanza el conocimiento en cada campo, surge cada vez más la necesidad de interactuar con otras
disciplinas en busca de teoŕıas, métodos, técnicas y herramientas que complementen las de la disciplina propia.
Un efecto colateral de ese proceso es la integración metodológica de las distintas disciplinas involucradas.
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Esto hace que el trabajo colaborativo entre investigadores de distintas áreas se convierta en algo im-
prescindible. La ciencia de la computación provee a esos investigadores recursos y herramientas para la
comunicación, el análisis, la representación, la administración y el procesamiento de datos, que hacen posi-
ble que los procesos de investigación sean más ágiles y productivos. Además de permitir procesar grandes
volúmenes de datos para su análisis, la computación puede también contribuir a la creación y ejecución de
experimentos y la elaboración de teoŕıas a partir de los resultados del modelado computacional, la simulación
y la visualización cient́ıfica[45].

Algunos ejemplos de las clases de problemas en los que la computación puede contribuir incluyen pro-
blemas cuyo fenómeno de estudio es inaccesible o de dif́ıcil acceso, por ejemplo la dinámica de los sistemas
planetarios o en general de la materia en el universo[4]; la función cerebral[38]; el modelado de las interaccio-
nes f́ısicas y qúımicas en el nivel molecular[20]; los eventos geológicos y climáticos, y muchos otros procesos
naturales.

Un concepto relevante para la tarea de modelado de tales procesos es el de sistema caótico. Un sistema
es considerado caótico si el problema de predecir su comportamiento es complejo o intratable.[2]

En particular, un modelo computacional pueden volverse intratable cuando el sistema que representa es
caótico. En particular interesa modelar problemas complejos, esto es, aquellos con muchos interesados en su
solución pero con objetivos distintos, posiblemente conflictivos, con muchas variables por considerar, para
los que parece nunca haber una solución óptima; por el contrario, la búsqueda de una mejor solución es un
problema continuo y permanente; y finalmente problemas para los que la experimentación es sumamente
costosa o del todo imposible.

Otro factor limitante de un modelo computacional de un sistema o proceso f́ısico es el modelo matemático
subyacente. Los sistemas continuos, por ejemplo los fluidos, son comúnmente modelados utilizando sistemas
de ecuaciones diferenciales. Pero la solución computacional de un sistema de ecuaciones diferenciales puede
ser muy demandante y costosa en tiempo de procesamiento.

El incremento en el uso de las computadoras para resolver esos tipos de problemas ha volcado la atención
hacia el desarrollo de métodos numéricos que puedan hacer los cálculos necesarios de manera precisa y
eficiente.

1.2.3. Caracterización de la ciencia moderna

La ciencia moderna es altamente inclusiva y transdisciplinaria. Los problemas abiertos en la actualidad
pueden clasificarse en las escalas ”muy grande” o ”muy pequeño”, como la astrof́ısica, la vulcanoloǵıa, la
ciencia de materiales o la neurociencia. Estas y otras áreas que requieren de mucho trabajo colaborativo se
encuentran en las listas de prioridad de muchos centros de investigación en todo el mundo. Algunas de las
caracteŕısticas que describen este conjunto de disciplinas son las siguientes:

Demandan conocimiento altamente especializado y de áreas relacionadas.

Las soluciones se construyen en forma colaborativa.

Utilizan métodos que integran otros de distintas disciplinas.

La experimentación tradicional, por ejemplo, en un laboratorio en forma aislada, es compleja, ya sea
por el alto costo financiero, el riesgo o la imposibilidad de acceso al objeto de estudio.

Se benefician del modelado matemático y computacional.

El marco de trabajo de la investigación cient́ıfica moderna reúne muchas disciplinas y enfoques, pero
con particular énfasis se resalta la necesidad de crear modelos y realizar simulaciones computacionales en
múltiples escalas, es decir, en múltiples niveles de abstracción de los procesos en estudio. En la sección se
menciona un ejemplo de esto en el dominio de la qúımica computacional.
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1.3. Aplicaciones de las Ciencias Computacionales

1.3.1. Ciencias de la Computación

Las ciencias computacionales se caracterizan por incorporar métodos matemáticos y computacionales en
la resolución de problemas. Esto hace imprescindible para los investigadores de las disciplinas de aplicación
involucrarse en el proceso de modelado computacional.

La Ciencia de la Computación estudia los métodos formales para la resolución de problemas y sus pro-
piedades computacionales. Esto incluye desde el estudio de máquinas, vistas éstas como sistemas formales,
hasta su diseño, implementación y validación.

De acuerdo con la IEEE1 y la ACM2, la siguiente es la lista de áreas del conocimiento relacionadas
con las Ciencias Computacionales, que deben integrar el programa educativo básico de las Ciencias de la
Computación [37]:

Algoritmos y complejidad : análisis y diseño de soluciones algoŕıtmicas y sus propiedades computacio-
nales.

Arquitectura y organización: jerarqúıa de memoria de una computadora y su impacto en el diseño de
programas.

Estructuras discretas: estudio de sistemas no continuos esenciales para la teoŕıa y el modelado compu-
tacional (grafos y conjuntos).

Sistemas inteligentes: diseño de métodos capaces de realizar tareas en forma autónoma.

Redes y comunicaciones: métodos que permiten establecer v́ınculos entre máquinas, por ejemplo para
env́ıo de datos.

Sistemas operativos: estudio de la asignación óptima de recursos computacionales y el diseño de sistemas
que realizan esta labor.

Computación paralela y distribuida: estudio y diseño de sistemas capaces de realizar más de una ins-
trucción por unidad de tiempo.

Lenguajes de programación: involucra el conocimiento de métodos formales para el diseño y creación
de programas, desde el nivel gramatical hasta el de compilación y ejecución.

Cabe destacar que la matemática es un área del conocimiento fundamental y transversal a la lista an-
terior. El curŕıculo universitario de las ciencias de la computación es variado e incluye por lo general otros
temas adicionales, como la ética y responsabilidad social, o la seguridad informática. La lista de arriba in-
cluye solamente aquellas áreas del conocimiento que se consideran esenciales para el ejercicio de las ciencias
computacionales. El investigador de cualquiera de estas ciencias debe incorporar, con suficiente profundidad,
los temas de esa lista.

Para el diseño de modelos o métodos computacionales es importante considerar la complejidad de los
algoritmos que los resuelven, ya que un modelo debe ser tratable, es decir, producir resultados en un tiem-
po y haciendo uso de espacio razonables. Las diferentes arquitecturas computacionales y los lenguajes de
programación imponen restricciones f́ısicas y lógicas de representación numérica y de procesamiento, que
pueden producir errores como el redondeo o el truncamiento.

Por otro lado, muchas tareas pueden automatizarse mediante métodos de la inteligencia artificial, comúnmen-
te utilizados para la resolución de problemas complejos en tareas como la clasificación, la búsqueda, o la
optimización. Algunos buenos ejemplos de textos introductorios al campo de la inteligencia artificial pueden
son [5], [10], y más recientemente [35]. En las dos últimas décadas se ha visto un crecimiento considerable en
la cantidad de investigaciones de las ciencias computacionales en las que se utilizan métodos de la inteligencia
artificial para proveer soluciones cualitativas o aproximadas a sus preguntas de investigación.

1Institute of Electrical and Electronic Engineering, http://www.ieee.org
2Association for Computing Machinery, http://www.acm.org
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Adicionalmente, un conocimiento básico de sistemas operativos y de redes permite al cient́ıfico compu-
tacional no sólo utilizar las máquinas en forma más eficiente, sino entender cómo funciona la asignación de
recursos como memoria y tiempo de procesador, los cuales contribuyen al rendimiento de un programa. Fi-
nalmente, la mayoŕıa de problemas relevantes en la actualidad son muy complejos y no pueden ser resueltos
eficientemente en máquinas aisladas; se hace imprescindible el uso de la computación paralela para diseñar
soluciones eficientes que permitan resolver problemas de forma más rápida.

Un cient́ıfico computacional debe tener al menos un conocimiento de nivel instrumental de estos temas,
para que se desempeñe con fluidez y sea capaz de proponer, justificar y trabajar en proyectos multi- y
transdisciplinarios con fuertes componentes computacionales. Si bien la ciencia computacional es primordial-
mente ciencia mejorada con recursos computacionales, el impacto de las ciencias de la computación en la
gama completa de disciplinas afines es tan alto que no puede ni debe ser ignorado.

1.3.2. Qúımica Computacional

El uso de modelos matemáticos en la Qúımica es importante para producir explicaciones a muchos de
los procesos y estructuras complejas, propios del objeto de estudio de esta ciencia. El trabajo en esta área
es tan relevante que recientemente se le otorgó el premio Nobel de Qúımica a tres cient́ıficos por su trabajo
en simulación para predecir procesos [1].

Como se mencionó en la sección anterior, la necesidad de crear modelos y realizar simulaciones compu-
tacionales en múltiples escalas es propia de las ciencias computacionales. Un ejemplo de esto es el premio
Nobel de Qúımica del año 2013[1], otorgado a los investigadores Arieh Warshel, Michael Levitt y Martin
Karplus, ”por el desarrollo de modelos multiescala para sistemas qúımicos complejos”, y ”porque han he-
cho posible el mapeo de los misteriosos caminos de la qúımica utilizando computadoras”[1]. Su trabajo ha
contribuido sustancialmente a mejorar los métodos de simulación y predicción de procesos qúımicos.

Si bien todav́ıa se utilizan métodos no computacionales para realizar algunas de las tareas de recolección
de datos, clasificación, análisis, visualización y optimización, cada vez más la qúımica computacional es
utilizada para sustituir esos métodos.

El reto en este contexto consiste en construir modelos teóricos que representen un fenómeno en el mayor
nivel de granularidad posible, es decir, con el mayor detalle posible, pero lo suficientemente simples para ser
reproducidos o simulados en un computador.

A continuación se ofrece una descripción general del área de qúımica computacional, una descripción más
detallada puede encontrarse en [11].

Uno de los problemas de la qúımica más aptos para ser resueltos mediante métodos computacionales es
el análisis de las propiedades de las moléculas. Conociendo esas propiedades se puede calcular, entre otras
cosas:

Optimizaciones geométricas.

Distribuciones de carga.

Estructuras de transición.

Frecuencias.

Superficies de enerǵıa potencial.

Anclaje.

Las constantes para reacciones qúımicas.

Calor de las reacciones.

Para modelar el comportamiento y las propiedades de moléculas, la qúımica computacional hace uso de
la Mecánica Cuántica, y en particular, de la Ecuación de Schrödinger [43]

Para describir la estructura de una molécula se utiliza la fórmula molecular, que describe el número y los
tipos de átomos presentes en una molécula, y los enlaces o ligas entre esos elementos.
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Un problema interesante asociado a la estructura molecular consiste en predecir la forma en la que los
átomos se conectan a la molécula, dada su posición relativa respecto de los demás. Las estructuras óptimas
necesitan menos enerǵıa para formar las conexiones. El problema de predecir una estructura molecular en
condiciones ideales puede ser computacionalmente sencillo. Sin embargo, una predicción similar para una
estructura molecular compleja, bajo condiciones no ideales (por ejemplo, relacionadas con la enerǵıa, o
la temperatura), puede resultar sumamente intensiva computacionalmente, al grado de hacer el problema
intratable.

A pesar de este problema, resolver la tarea utilizando métodos computacionales es mucho más eficiente
que realizar la predicción de las estructuras con métodos de laboratorio. Para que la solución sea tratable,
la estrategia de la qúımica computacional consiste en utilizar recursos de computación de alto rendimiento,
consistentes de recursos computacionales distribuidos y de ejecución paralela. Dos ejemplos de servicios de
qúımica computacional en la web son folding@home[13] y Rosetta@home[14]. Estos proyectos utilizan la
computación en mallas (redes de recursos de procesamiento de datos bajo demanda) para ejecutar procesos
solicitados por sus usuarios.

Debido a que el cálculo de la estructura molecular es tan demandante de recursos computacionales,
las estructuras calculadas son almacenadas en bases de datos especializadas, lo que ayuda a simplificar el
trabajo de otros investigadores en el resto del mundo. Los servicios computacionales disponibles, como los
ejemplos mencionados arriba, pueden ser utilizados en investigaciones para identificar propiedades de las
moléculas inherentes a su estructura, o para diseñar nuevas moléculas o sustancias en el área de la medicina
personalizada.

Los métodos de la qúımica computacional se derivan principalmente de la teoŕıa de la computación
cuántica. Estos métodos se conocen como métodos ab initio y pueden procesarse utilizando solamente la
ecuación de Schrödinger. Otros tipos de método necesitan parámetros de datos obtenidos emṕıricamente
para poder utilizar los modelos matemáticos. Estos métodos se conocen como semiemṕıricos. Finalmente, se
pueden también encontrar métodos de la mecánica molecular, que utilizan la f́ısica clásica para explicar la
dinámica molecular.

En todos los casos los métodos buscan aproximar el modelo al fenómeno real sin pretensión de ser
exactos, lo que, como se explicó anteriormente, es una caracteŕıstica de cualquier modelo. Los métodos de la
mecánica molecular son los menos exigentes computacionalmente, mientras que los métodos ab initio son los
más demandantes. Los primeros se utilizan para procesar sistemas moleculares muy grandes y los segundos
para sistemas pequeños o de menor complejidad. Los métodos semiemṕıricos son útiles para dar cuenta de
sistemas de tamaño intermedio, y requieren de una capacidad computacional mayor a los de la mecánica
molecular, pero menor a los ab initio. Con más capacidad computacional es posible hacer cálculos más
precisos, lo que hace apropiada la aplicación de máquinas y técnicas de la computación de alto rendimiento
en la qúımica computacional.

Para terminar, es importante notar la diversidad de aplicaciones de software desarrollados para la qúımi-
ca computacional, en particular para la ejecución de métodos semiemṕıricos, para la modelación y el diseño
de moléculas, para cálculos de qúımica cuántica, para la f́ısica de estados sólidos, y para la mecánica mole-
cular. Algunos de los más utilizados son Gaussian[25], GAMESS (General Atomic and Molecular Electronic
Structure System)[34], MOPAC (Molecular Orbital PACkage)[49], Spartan[26] y Sybyl[9].

1.3.3. F́ısica Computacional

La f́ısica computacional se ocupa de la aplicación, implementación, desarrollo y estudio de los métodos
computacionales para la resolución de problemas de la F́ısica. Los oŕıgenes de esta disciplina no son claros,
pero por cientos de años se han realizado cálculos de la dinámica del sistema solar y otros sistemas complejos
modelados y estudiados teóricamente.

Uno de los ejemplos más recientes del desarrollo de la f́ısica computacional es el Gran Colisionador de Ha-
drones (LHC) construido por la Organización Europea para la Investigación Nuclear (CERN)[19], que genera
un volumen aproximado de 30 Petabytes de datos anualmente. Para poder procesar toda esa información,
existe la necesidad de contar con modelos y computadoras con enormes capacidades de procesamiento.

Tradicionalmente la f́ısica ha sido dividida en la f́ısica experimental, que observa y estudia los fenómenos
que ocurren en el mundo real, y la f́ısica teórica, que utiliza métodos matemáticos y modelos simplificados
para explicar lo que se ha observado experimentalmente, para poder realizar predicciones en experimentos
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futuros. La f́ısica computacional combina los métodos de la f́ısica experimental y la teórica.[42].
La diversidad de las aplicaciones de la f́ısica computacional es enorme. Es una disciplina en crecimiento,

y nuevas áreas fuera de sus fronteras comunes están siendo desarrolladas continuamente. La modelación y
la simulación son dos de los métodos más utilizadas en esta área, que se basa principalmente en métodos
numéricos y matemáticos para representar sistemas f́ısicos del mundo real.

La meteoroloǵıa, por ejemplo, es un campo de la f́ısica que se ha beneficiado mucho de esta metodoloǵıa.
Se han desarrollado herramientas de simulación climática que ayudan a hacer estudios y predicciones basadas
en un modelo o conjunto de modelos que representan cada uno de los subsistemas que están involucrados
en el complejo sistema meteorológico: sistemas de presión atmosférica, humedad, temperatura, entre muchos
otros.

La atmósfera puede entenderse como el contenedor de un fluido. Desde esta perspectiva, es posible aplicar
modelos de ecuaciones de dinámica de fluidos y de la termodinámica para predecir un estado futuro del fluido
a partir de uno conocido previamente. Estos modelos se usan para hacer predicciones climáticas basadas en
datos reales recolectados.

En esta área, el modelo de investigación y pronóstico meteorológico WRF (Weather Research and Forecast
Model [18]) es utilizado en gran cantidad de aplicaciones meteorológicas, desde simulaciones locales con
escalas de decenas de metros, hasta modelos globales con escalas de miles de kilómetros.

Otro ejemplo es la clase de modelos de simulación oceanográfica, como ROMS (Regional Ocean Mode-
ling System [44]). ROMS es una combinación de algoritmos numéricos para realizar simulaciones oceánicas
dinámicas y de alta resolución. Los modelos de circulación oceánica se basan usualmente en las ecuaciones
de Boussinesq[6], en la hidrodinámica y los balances de masa.

1.3.4. Bioloǵıa Computacional

La bioloǵıa computacional se refiere al estudio de la vida a través de métodos computacionales. Esta
disciplina tuvo su origen formalmente entre las décadas de los años 50 y 60[23] del siglo XX. Se dieron al
menos tres eventos que marcaron su inicio:

La base de datos de secuencias de aminoácidos en crecimiento provéıa tanto una fuente de datos aśı como
problemas interesantes que no pod́ıan ser resueltos sin una computadora (en un tiempo aceptable).

La idea de que las macromoléculas acarrean información tomó fuerza como concepto central de la
bioloǵıa molecular. Esto permitió establecer un vinculo conceptual entre la bioloǵıa molecular y las
ciencias de la computación, en particular haciendo uso de la teoŕıa de la información[3].

La comunidad académica vio la llegada de los computadores digitales de “alta velocidad” que fueron
desarrollados por los programas militares durante la segunda guerra mundial, y su aplicación en la
modelación de procesos biológicos.

Luego del hallazgo de la estructura tridimensional de la mioglobina por John Kendrew en 1962, Margaret
Dayoff, directora asociada del National Biomedical Research Foundation utilizó una serie de programas
escritos en FORTRAN para determinar la secuencia de aminoácidos en protéınas[31]. Usando fragmentos de
péptidos que se traslapan de la digestión parcial de una protéına, los programas de Dayoff calcularon todas
las posibles secuencias que era consistentes con los datos, llegando a la secuencia correcta en unos minutos.

Todos estos datos sobre protéınas fueron utilizados para crear un atlas de protéınas, el Atlas of Protein
Sequence and Structure, que más tarde, en 1983, se convertiŕıa en el Protein Information Resource. Ambas
bases de datos son extensivamente utilizados en investigación básica en bioloǵıa.

A partir de ah́ı, se han hecho muchos descubrimientos biológicos utilizando la capacidad de las computado-
ras, en particular métodos de búsqueda por homoloǵıa, modelación y visualización de protéınas, y alineado
de secuencias, entre otros.

La Bioloǵıa Computacional no se da exclusivamente en el nivel microscópico. Existen problemas en el
nivel macroscópico que pueden ser enfrentados computacionalmente, como por ejemplo estudios sobre nichos
ecológicos[46][52][29], investigación en neurociencia[21][7], y estudios de filogenia[30][47].

La Bioloǵıa Computacional no debe confundirse con la Bioinformática, aunque ambos campos están
estrechamente relacionados. La Bioinformática es una disciplina de la informática y la computación que
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busca proveer herramientas para procesar, almacenar, categorizar y visualizar datos e información biológica.
Se construyen algoritmos para resolver problemas biológicos pero el enfoque está en el método mismo y no
tanto en la aplicación. El método debe ser validado por la comunidad cient́ıfica en informática y computación,
utilizando las métricas del campo.

Existe una gran cantidad de programas de computador para la investigación en la bioloǵıa computacional,
que cabe destacar, La mayoŕıa esta disponible para alguna versión del Sistema Operativo GNU/Linux.
Algunos ejemplos son:

Rosetta[41]: paquete de software para la modelación y el análisis computacional de la estructura de
protéınas. Este software ha permito avances importantes en el campo, como el diseño de novo de
protéınas y de enzimas, el acoplamiento de ligandos y la predicción estructural de macromoléculas.

openModeller [33]: ambiente para realizar experimentación de modelación de nichos ecológicos. Permite
ejecutar tareas tales como el muestreo de puntos para proyectar modelos en diferentes ambientes, la
lectura de ocurrencia de especies y de datos ambientales. Dispone de más de diez implementaciones de
algoritmos como GARP, Maxent, ENFA y máquinas de soporte vectorial.

BLAST [36]: herramienta para encontrar similitudes locales entre secuencias biológicas, sean estas de
nucleótidos o aminoácidos. BLAST compara estas secuencias contra bases de datos (remotas o locales) y
calcula estad́ısticamente los mejores emparejamientos. También se puede utilizar para inferir la relación
funcional y evolutiva entre secuencias, aśı como identificar miembros de una misma familia de genes.

QIIME [8]: paquete para la comparación y el análisis de comunidades microbianas. Permite al usuario
realizar tareas tales como la elección de OTUs, designaciones taxonómicas, la contracción de arboles
filogenéticos, entre otros.

PHYLIP [16]: software para inferir árboles evolutivos. Dentro de los métodos implementados cuenta
con matrices de distancias, el principio de parsimonia y verosimilitud.

Uno de los ejemplos concretos en el área de la Bioloǵıa Computacional es la actividad del Centro para
Bioloǵıa Computacional (CCB) [51], localizado en la Universidad de California. El CCB mantiene uno de
los archivos de imágenes cerebrales más grandes del mundo, aśı como sus meta datos asociados información
genética e imágenes derivadas. Estos, y otros datos, deben ser procesados por computadoras con algoritmos
diseñados especificamente para tratar grandes cantidades de datos. Dichos algoritmos son tambien desarro-
llados por el CCB.

1.4. Comentarios finales

Las ciencias computacionales son el resultado de satisfacer las necesidades de procesamiento de datos de
las ciencias tradicionales con las herramientas de la computación de alto rendimiento.

El potencial de producción de conocimiento de estas ciencias es por el momento, limitado únicamente
por los recursos computacionales disponibles: espacio de almacenamiento, y velocidad de procesamiento.

La aparición de estas nuevas formas de hacer ciencia hace necesario que el cient́ıfico de cualquier disciplina
incorpore a sus conocimientos los principios y métodos fundamentales de la ciencia de la computación, en
particular para el análisis de la complejidad de los problemas en estudio, para la creación de modelos cada
vez más finos y detallados de esos problemas, y para la implementación y puesta en marcha de métodos para
resolver las tareas básicas de las ciencias computacionales: la simulación, la clasificación, la visualización y
la optimización, que la ciencia necesita para responder a sus preguntas relevantes. Estas tareas son descritas
en el caṕıtulo siguiente: Taxonomı́a de las tareas de las ciencias computacionales.
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Caṕıtulo 2

Taxonomı́a de las tareas de las
ciencias computacionales

2.1. Tareas

2.1.1. Introducción

En esta sección se exponen algunos de los tipos de tareas más comunes de las ciencias computacionales.
La lista no pretende ser exhaustiva pero si dar un vistazo general a los aspectos metodológicos que son
comunes en el área.

2.1.2. Tipos de tarea

Modelación

Un modelo es una representación simplificada de un fenómeno del mundo real que se conforma con el
propósito de estudiar ese fenómeno. Esta simplificación es necesaria debido a que muchos de estos fenómenos
son muy complejos para analizarlos en su totalidad y, debido a esto, es dif́ıcil predecir sus comportamientos
en el futuro.

Una de las formas más comunes de modelar un fenómeno con fines cient́ıficos es con el uso de las
matemáticas. Se parte del supuesto de que un fenómeno puede ser interpretado como una serie de elementos
que se relacionan entre śı por medio de reglas (operaciones matemáticas) y que existen bases evidentes a
partir de las cuales podemos sustentar estas relaciones (axiomas).

El modelo matemático es entonces la herramienta del cient́ıfico para comprender el fenómeno desde un
punto de vista e interpretación particular, por lo cual no debe confundirse con el fenómeno en śı. Su utilidad
radica en que un modelo bien planteado puede ser utilizado para comprender mejor el fenómeno que se
estudia y realizar predicciones que pueden ser luego corroboradas observando el fenómeno real.

Al ser el modelo una creación interpretativa de una o más personas, inspirada en un fenómeno real, este
puede tener diversas caracteŕısticas que lo colocan en una categoŕıa en especial. Según [45] un modelo puede
clasificarse en las siguientes categoŕıas:

1. El modelo puede ser probabiĺıstico, cuando existe algún componente de aleatoriedad, o puede ser de-
termińıstico, cuando los resultados siempre son los mismos dadas las mismas condiciones iniciales.

2. El modelo puede ser estático, cuando su definición no incluye o no necesita la variable de tiempo, o
puede ser dinámico, cuando la variable tiempo es crucial para realizar predicciones sobre un fenómeno.

3. El modelo puede ser continuo, cuando el tiempo es representado como un fenónemo continuo, o discreto,
cuando el tiempo es modelado en unidades discretas.

Un modelo puede encontrarse dentro de alguna o varias de esas categoŕıas según su concepción y según
el fenómeno que desea representar.
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A grandes rasgos, según [45], los pasos para crear un modelo son los siguientes:

1. Analizar el problema: es necesario saber, en primera instancia, si el problema se puede modelar y, si
lo es, si tiene sentido modelar el fenómeno para solucionar el problema. Este proceso involucra un alto
grado de cuidado en especificar de forma precisa cuál va a ser el objetivo del modelo, sus elementos y
sus caracteŕısticas. La naturaleza matemática del modelo obliga a ser rigurosos en su definición, lo que
es crucial para la comprensión del problema.

2. Formular el modelo: este paso puede variar según la naturaleza del problema, pero normalmente el
proceso sigue pasos similares en la mayoŕıa de los casos.

a) Recolectar datos: la observación del fenómeno que se quiere modelar normalmente debe venir
acompañada de una recolección de datos sistemática. Aqúı el término observación tiene una
connotación amplia, que no se limita a la observación con los sentidos humanos sino que involucra
instrumentos y técnicas de medición y recolección de datos.

b) Simplificar y determinar variables: para ayudar a resolver el problema, el modelo debe reflejar los
aspectos considerados relevantes del fenómeno. También debe definir con precisión las relaciones
entre las variables y determinar cuáles de ellas dependen del comportamiento de otras variables
y cuáles son independientes. Finalmente, es importante determinar las unidades de medición de
las variables del modelo.

c) Definir ecuaciones y funciones: el modelo consiste finalmente de un conjunto de ecuaciones y
funciones definidas sobre las variables identificadas en el paso anterior.

3. Resolver el modelo: en esta etapa el modelo debe ser implementado en un modelo computacional y
puesto en ejecución. El resultado podrá ser variado: la generación de un conjunto de datos a partir
una simulación, una visualización, etc. Este es uno de los pasos cŕıticas del proceso de construcción
de un modelo, pues debe asegurarse que la implementación computacional refleja fielmente el modelo
matemático.

4. Validación y verificación del modelo: el proceso de validación del modelo nos dice si las soluciones
efectivamente resuelven el problema que se propuso resolver, mientas que el de verificación nos dice si
las soluciones que ofrece el modelo son correctas. Con base en esos resultados, se determina si el modelo
debe ser refinado o extendido. Por ejemplo, un modelo de aproximación numérica puede ser verificado
mediante una metodoloǵıa anaĺıtica; si los resultados no coinciden se debe considerar la posibilidad
de que la implementación computacional realice cálculos sin la precisión necesaria. De ser cierto, esto
obliga a volver al segundo paso para revisar las variables del modelo, sus unidades, relaciones con otras
variables, y las consideraciones computacionales con las cuales se hizo la implementación.

5. Documentación y comunicación de resultados: como en cualquier proyecto cient́ıfico, el proceso debe ser
adecuadamente documentado y presentado a un público que pueda evaluar el proceso y las conclusiones
de la implementación y predicciones del modelo. Un modelo exitoso puede luego ser reutilizado en
problemas similares, o más generales, para complementar el trabajo de otros investigadores.

6. Mantenimiento del modelo: el proceso de investigación cient́ıfica es continuo y permanente, y debe ser
siempre abierto al debate, la rectificación, y la inclusión de nuevas fuentes de información. Los datos o
variables con base en los cuales se creó un modelo pueden luego ser reemplazados por otros datos más
precisos, o variables más relevantes, que no fueron identificadas originalmente, ya sea por limitaciones
de conocimiento o de naturaleza tecnológica. De la misma forma, ya que el modelo es una interpretación
particular de un fenómeno, un investigador puede encontrar una interpretación alternativa del mismo
fenómeno que se enfoque en otras variables y en otras metodoloǵıas de recolección de datos, y adaptar
su modelo correspondientemente. Por otra parte puede ser que la implementación del modelo se vuelva
obsoleta por un cambios en estándares de hardware o software, lo que implica que el modelo debe ser
adaptado, o renovado, para las caracteŕısticas de hardware y software actuales. El modelo es, de esta
forma, una representación dinámica que debe adaptarse a circunstancias y contextos espećıficos.
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Comúnmente un modelo matemático puede ser implementado en una computadora. Los modelos ma-
temáticos pueden considerarse modelos computacionales o convertirse en modelos computacionales. Un
modelo computacional, a diferencia de uno matemático, debe considerar las limitaciones de las máquinas
computacionales como la representación discreta de datos, el espacio disponible de memoria, el tiempo de
procesamiento, o la arquitectura de la máquina. Por ejemplo, la implementación computacional de un modelo
matemático que describa un proceso continuo tendrá que comprometerse con un modelo de representación
discreta del proceso y del tiempo.

Simulación

En muchos casos la realización de experimentos con medios f́ısicos es muy compleja o imposible, por lo
que el uso de simulaciones computacionales es la mejor opción.

El modelo matemático provee una formalización de lo que se desea representar del fenómeno, mientras que
el modelo computacional provee una versión del modelo matemático que puede ser transcrita a un lenguaje
de programación y puesta a funcionar en una computadora: una simulación.

Las caracteŕısticas del modelo usualmente son transferibles a la simulación. Por ejemplo un modelo estáti-
co y probabiĺıstico se traducirá a una simulación con caracteŕısticas estáticas y probabiĺısticas. Usualmente
las simulaciones agregan un elemento de aleatoriedad en las entradas o parámetros del modelo, lo que les
permite generar cientos o miles de experimentos que ayuden a hacer los resultados más confiables.

Una simulación bien diseñada puede revelar al usuario aspectos del fenómeno que no hab́ıa notado
anteriormente y múltiples usuarios pueden llegar a tener diferentes tipos de revelaciones según su área de
experiencia. Aśı, un experto en qúımica puede descubrir algo muy distinto a lo que podŕıa observar un
experto en bioloǵıa o en f́ısica en una misma simulación. Esto es una propiedad que comparten los procesos
de simulación y visualización, y no es extraño ver casos en los que la simulación y la visualización se integran
en un mismo modelo computacional.

Las simulaciones pueden tener muchos usos más allá de los resultados numéricos que produce o las
revelaciones que promueve. En [48] podemos encontrar algunos ejemplos de uso de las simulaciones:

1. Entrenamiento. Las simulaciones pueden ser utilizadas para entrenar personas en múltiples áreas como
la aviación y la operación de maquinaria peligrosa.

2. Apoyo en el análisis estad́ıstico. Una vez validada una simulación, esta puede ser utilizada para probar
múltiples entradas y salidas y validar predicciones estad́ısticas. Este es uno de los usos más comunes
de las simulaciones en las ciencias.

3. Gúıa de animaciones por computadora. La simulación puede combinarse con la visualización para
observar cómo una animación se comporta a partir de los parámetros de entrada y su configuración.

4. Control de procesos en ĺınea. Para un proceso que se está llevando a cabo en un momento dado, es
a veces necesario predecir su comportamiento en el futuro inmediato. En estos casos la simulación se
utiliza en paralelo con el proceso y la predicción debe ser constantemente actualizada.

5. Predicción de resultados. La predicción de resultados puede ser incierta debido a la incertidumbre
asociada al modelo y a su implementación, como en el caso de problemas complejos o caóticos.

6. Prueba y evaluación de sistemas nuevos. Para sistemas o fenómenos nuevos o de los cuales se conoce
poco, la simulación puede ser utilizada para su prueba y evaluación.

7. Apoyo en el análisis bajo incertidumbre del comportamiento de un sistema. Cuando no es posible saber
a priori cómo funciona un sistema, se puede utilizar la simulación para ganar conocimiento sobre el
mismo sin enfocarse necesariamente en los resultados.

8. Mejora de la enseñanza y la educación. La popularidad de la modelación y de la simulación en la
enseñanza va en aumento. En algunos casos el proceso de modelación puede utilizarse como metodoloǵıa
didáctica si se utiliza la simulación para calibrar modelos de fenómenos reales. La metodoloǵıa obliga
a los estudiantes a trabajar con las manos en un acercamiento más emṕırico a la comprensión del
fenómeno.
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No siempre realizar simulaciones es garant́ıa de que se tendrán las soluciones deseadas o correctas, la
complejidad de los fenómenos reales hace que las simulaciones sean confiables hasta cierto punto, por lo que
es imprescindible tener presentes sus limitaciones. Según [45] algunas limitaciones de la simulación son:

1. Toma mucho tiempo o es muy costosa. Incluso cuando la experimentación con simulaciones salga más
barata que la experimentación real el proceso de crear la simulación que puede empezar con todo el
proceso de modelación puede resultar excesivamente costosa.

2. Usualmente es imposible probar todas las alternativas, dada la gran cantidad de variables y las múltiples
combinaciones de sus valores. Para solventar esto usualmente se utilizan heuŕısticas que gúıan los valores
que se utilizarán para las variables y las combinaciones que parezcan más relevantes o reales. Esto puede
dar buenos resultados, pero no es posible garantizar que sean óptimos.

3. Las conclusiones son inciertas. Dado que las simulaciones integran múltiples elementos que pueden
fallar o presentar errores, es necesario validar con conocimiento experto las conclusiones que se deriven
de la simulación.

4. No se dispone de datos para la verificación. Si una simulación hace predicciones de fenómenos con los
que no puede experimentar o recolectar datos directamente, el proceso de verificación del modelo puede
verse limitado. significado o relevancia.

A pesar de estas limitaciones, la simulación es una herramienta que se ha vuelto indispensable en muchos
procesos de investigación cient́ıfica, y ha llegado a sustituir o complementar el proceso de experimentación
tradicional en el método cient́ıfico.

Clasificación

La clasificación es una tarea común para las personas, y se define como el proceso de asignar un conjunto
de tuplas a una categoŕıa o clase previamente definida. Cada tupla representa un objeto a clasificar, y es el
conjunto de los atributos relevantes de ese objeto. La dimensión de una tupa es la cantidad de atributos que
describe.

Los problemas de este tipo están presentes en prácticamente todos los campos del quehacer humano, pero
dada la complejidad de la tarea o por las condiciones del entorno donde se debe desempeñar, la clasificación
debe echar mano de la computación. Existe muchos ejemplos de esto en problemas de la Microbioloǵıa [40],
el análisis de imágenes [22], o la visión por computadora [32], entre otros.

Formalmente, la tarea de clasificación se define mediante una función f : x→ y, que mapea una tupla x
a una categoŕıa o clase predefinida y. Esta función también se conoce como modelo de clasificación [50].

La clasificación es particularmente útil para crear modelos descriptivos o predictivos de un conjunto de
datos:

Modelo descriptivo: un herramienta explicativa para diferenciar diferentes tuplas de diferentes clases.
Los modelos descriptivos explican qué atributos de los objetos los identifican como miembros de una
clase.

Modelo predictivo: un herramienta que permite asignar una tupla a una clase, ya sea con base basado en
una descripción anaĺıtica (un modelo) o en una descripción emṕırica (basada en datos, observaciones)
del objeto a clasificar.
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Figura 2.1: Modelo general de clasificación

Una técnica de clasificación o clasificador es una aproximación sistemática para la creación de modelos de
clasificación a partir de datos de entrada. Existen muchos y diversos clasificadores que pueden ser utilizados en
diferentes problemas de clasificación con resultados variables: árboles de decisión, modelos basados en reglas,
redes neuronales artificiales, máquinas de soporte vectorial, modelos de inferencia bayesiana, de agrupamiento
o de clustering, entre otros. Cada uno de ellos tiene caracteŕısticas particulares que los hacen mejores o
peores dado el problema a tratar. Dos de esas caracteŕısticas son claves y están relacionan con los modelos

13



mencionados anteriormente: su capacidad para ajustarse a los datos existentes y su capacidad para predecir
clases de tuplas que nunca hab́ıa visto antes.

De forma general, los problemas de clasificación se pueden abordar de la siguiente manera:

1. Hacer una recopilación de los datos que se desean clasificar.

2. Realizar una segmentación de los datos en dos conjuntos: uno de entrenamiento y otro de prueba, por
ejemplo asignando 60 % de los datos para el entrenamiento y 40 % para las pruebas.

3. Generar un modelo de clasificación mediante la aplicación del clasificador a los datos de entrenamiento.
Es en esta etapa donde se observa la capacidad del modelo para ajustarse a los datos existentes.

4. Evaluar el modelo con los datos de prueba. Aqúı se evalúa la capacidad del modelo para predecir la
clasificación.

La figura 2.1 muestra un modelo general para abordar los problemas de clasificación.
La evaluación del desempeño del clasificador se puede basar en el porcentaje de datos clasificados correc-

tamente. Estos se pueden representar en una tabla llamada matriz de confusión, como se muestra en la tabla
2.2. Existen también otras métricas que se utilizan para medir el desempeño de un clasificador, como la tasa
de error y la precisión.

Figura 2.2: Ejemplo de matriz de confusión

Muchas veces la escogencia de un clasificador depende de la configuración de los datos a procesar: sus
dimensiones, tipos y tamaños, entre otros. A partir de estas caracteŕısticas un clasificador puede ser mejor
que otro [39].

Visualización

La visualización es la tarea de seleccionar, ordenar y presentar datos en una representación visual[53]. La
presentación debe ayudar a caracterizar los datos y las relaciones entre ellos. El propósito de la visualización
es ayudar para que la interpretación de la información presentada sea más rápida y clara, y que facilite su
abstracción.

Una propiedad fundamental de toda visualización es su adecuación. La visualización en las ciencias
computacionales se basda en diversas metáforas para el ordenamiento y presentación de la información, es
decir, śımiles con objetos o procesos naturales o de producción humana, que por su familiaridad facilitan la
interpretación adecuada de los datos.

Un ejemplo del poder que puede tener la metáfora en la que se basa una visualización son los mapas.
Considere el fragmento de datos de la figura 2.3, estos son tomas de temperatura de la superficie oceánica
desde varios satélites orbitando el planeta. El conjunto de datos es mucho mayor de lo que muestra en este
fragmento. Interpretar esta tabla puede ser dif́ıcil por la cantidad de datos.
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Figura 2.3: Toma de datos satélites de temperatura de la superficie oceánica. Tomado de http://www.class.
ngdc.noaa.gov/saa/products/search?datatype_family=SST100.

Ahora considere el mapa de temperaturas oceánicas 2.4 generado a partir de los datos de la figura 2.3.
Este mapa abstrae de buena manera los datos de la tabla y los muestra en una representación gráfica que
transmite de forma directa la información que contiene.

Figura 2.4: Mapa de temperatura superficial del océano. Tomado de http://www.class.ngdc.noaa.gov/

saa/products/search?datatype_family=SST100.
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Existen tres componentes de toda visualización que son cŕıticos para su éxito: la selección de datos
relevantes, el mapeo de datos a elementos gráficos y su ordenamiento espacial [50].

Si un conjunto de datos es numeroso, y cada dato es representado por una gran cantidad de atributos, su
visualización puede resultar dif́ıcil. Para esto es necesario hacer una selección, ya sea eliminando o restando
importancia a algunos objetos de la visualización. Para escoger un subconjunto de los atributos se utilizan
técnicas de reducción de la dimensionalidad, como el análisis de componentes principales (PCA), la regresión
o las redes neuronales artificiales[17]. Con los atributos más relevantes es posible producir una visualización
con más significado. Por otro lado, cuando la cantidad de datos es muy alta, es posible que algunos sean
obstruidos y ocultados por otros, lo que hace dif́ıcil su despliegue visual. En este tipo de situación es útil
prescindir de algunos de estos datos, por ejemplo haciendo un muestreo o un acercamiento de los datos.

Los objetos a representar en la visualización deben ser transformados a elementos gráficos como puntos,
ĺıneas, colores o formas. Dependiendo del tipo de objeto a representar, se pueden utilizar varias estrategias.
Por ejemplo, si se desea visualizar un solo atributo categórico de los objetos, éstos pueden ser agrupados en
una categoŕıa y ser desplegados como una entrada en una tabla o en una área especial de la pantalla, como
se hace con los gráficos de barras. Si el objeto tiene varios atributos, estos pueden ser mostrados como una
fila o columna en una tabla o una arista en un grafo. Es posible también que los objetos se presenten como
puntos en un eje de coordenadas; estos puntos puede ser representados como formando figuras geométricas.

Los atributos de los objetos a visualizar pueden ser nominales (nombran o denotan un objeto), ordinales
(hacen referencia a un objeto dentro de un conjunto ordenado), o continuos (se refieren a los valores de
variables continuas del modelo).

Los atributos ordinales y continuos puede ser representados como caracteŕısticas con orden, como puntos
en ejes de coordenadas, intensidad, color, distancias de radio, anchura o altura. Por cierto, las variables
categóricas del modelo también pueden ser representadas usando esa misma estrategia. Debe considerarse el
caso de las variables nominales que no consideran un orden preestablecido, tales como lugares de nacimiento,
o los nombres de los miembros de una población.

Las relaciones entre atributos también debe mostrarse gráficamente, ya sea de forma expĺıcita o impĺıcita.
Por ejemplo, en un grafo las relaciones entre nodos se denota con una arista entre los mismos. Si se estuviera
visualizando carreteras entre ciudades, y las ciudades fueran nodos, el ancho de la arista, la distancia entre
los 2 nodos y el diámetro de los nodos pueden representar la afluencia de trafico, la distancia entre ciudades
y la cantidad de población de las ciudades respectivamente.

En muchos casos las relaciones entre atributos u objetos se dan impĺıcitamente. Si los objetos se repre-
sentan como puntos en un eje de coordenadas en tres dimensiones, los puntos que se agrupan visualmente
(sin necesidad de un componente gráfico entre ellos) muestran que los valores de sus atributos son similares.

Es dif́ıcil asegurar que las relaciones sean fácilmente observadas entre elementos gráficos; este es uno de
los retos más grandes de las técnicas de visualizaciones.

La importancia del ordenamiento espacial de los elementos gráficos se puede mostrar por medio del
siguiente ejemplo [50]: considere la figura 2.5 en la cual se muestra dos veces el mismo grafo. Del lado izquierdo
se despliega una vista del grafo, opuesto la lado derecho, una vista diferente, que separa espacialmente los
componentes conectados.

Figura 2.5: Interpretación visual de un grafo.

Utilizando esta ĺıneas como bases es posible crear desde visualizaciones sencillas como gráficos circula-
res 2.6, diagramas de caja y bigotes 2.7 o histogramas 2.8, los cuales son muy utilizados para visualizar
información estad́ıstica de una dimensión.
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Figura 2.6: Gráfico circular: asignación de fondos para Investigación y Análisis Planetario 2007-
2008, NASA, E.E.U.U. Tomando de http://science1.nasa.gov/researchers/sara/division-corner/

planetary-science-division-corner/.

Figura 2.7: Diagrama de caja y bigotes: Total de bacterias cultivables en las aguas del ŕıo Hudson y el canal
Gowanus. http://seceij.net/seceij/winter12/bio-math mappin.html
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Figura 2.8: Histograma: tamaño de exoplanetas conocidos, descubiertos por la Misión Kepler de la NASA
http://www.nasa.gov/content/sizes-of-known-exoplanets

.

Otras visualizaciones más elaborados como mapas de calor 2.9 o Treemaps 2.10 son utilizados para
visualizar variables en dos dimensiones y son comunes en áreas como bioloǵıa o informática.
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Figura 2.9: Mapa de calor: Péptidos utilizados en tratamientos de neurotoxinas en ratones de laboratorio
http://www.pnnl.gov/science/highlights/highlight.asp?id\unhbox\voidb@x\bgroup\let\unhbox\

voidb@x\setbox\@tempboxa\hbox{6\global\mathchardef\accent@spacefactor\spacefactor}\

accent226\egroup\spacefactor\accent@spacefactor64

.

Visualizaciones mucho más complejas como animaciones, imágenes generadas por computadora (render)
de superficies o volúmenes 2.11, o figuras en tres dimensiones 2.12 son muy llamativas y pueden comunicar
mucha más información en un solo vistazo.
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Figura 2.10: Treemap: exportaciones de chile en el 2010 http://atlas.media.mit.edu/explore/tree_map/

hs/export/chl/show/all/2010/

.

Figura 2.11: Mapa del universo conocido, cada punto representa un cuerpo astronómico identificado. Escala
logaŕıtmica http://www.visualizing.org/galleries/ars-electronica-big-picture

.
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Figura 2.12: Generación de imagen por computadora en 3D: Modelo de propagación de ondas śısmicas en la
Tierra https://www.tacc.utexas.edu/scivis-gallery/seismic-wave

.

Con frecuencia es necesario que la visualización de un proceso o problema no sea una imagen estática,
sino una secuencia de ellas, o un v́ıdeo. Esta forma de visualización genera un mayor impacto en el observador
y puede ofrecer una visión más amplia del proceso o problema.

La creación de una animación o v́ıdeo incluye la generación de series de imágenes y, cuando es posible,
una pista de audio que acompaña a las mismas.

Dos ejemplos de animaciones son las producidos por el Argonne National Laboratory. La figura 2.13
muestra una captura de pantalla del estado intermedio de una simulación de la distribución de la materia
en el universo, tomando en cuenta la influencia de la enerǵıa oscura. La figura 2.14 muestra una toma de
pantalla del flujo de glóbulos en sangre, diferenciando los saludables de los enfermos.
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Figura 2.13: Secretos del universo oscuro: Simulando el cielo en Blue Gene/Q http://www.youtube.com/

watch?v=t-o7DU3W7kw

.

Figura 2.14: Flujo sangúıneo: modelación y visualización multi-escala http://www.youtube.com/watch?v=

0hibGZi8TWs

.

Finalmente las visualizaciones cient́ıficas, deseablemente, debeŕıan satisfacer los criterios expuestos en
[27]:

Enfoque cient́ıfico.

Representación del error y la incertidumbre.

Interacción eficiente.

Uso de puntos de vista globales y locales, según el contexto.
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Optimización

Desde la perspectiva de la computación cient́ıfica y de la Computación de Alto Rendimiento (CAR), se
puede hablar de optimización del hardware y del software. Esta expresión se refiere al objetivo de mejorar
la utilización de los recursos computacionales para maximizar alguna variable de interés en el proceso de
modelación: mejoramiento de la precisión o de la velocidad en los cálculos, ahorro de enerǵıa, etc.

Estas estrategias de optimización incluyen el mejoramiento del rendimiento del código de un algoritmo
mediante la incorporación de mejoras en el código fuente, o el uso de técnicas de computación paralela, o el
uso de componentes de hardware con mayores capacidades, entre otras.

El objetivo de un problema de optimización es encontrar un conjunto de valores de entrada de una función
que maximizan o minimizan su valor. Es decir, que dada la función

f : V → R

se busca un valor xi en V tal que f(xi) ≥ f(x) para cualquier otro x, esto es, el máximo de la función
(o, correspondientemente, se busca un valor xi en V tal que f(xi) ≤ f(x) para cualquier otro x, el mı́nimo
de la función.

Esta definición general puede aplicarse en muchas áreas para diversos problemas. Dependiendo del con-
texto donde se aplique f , puede llamarse una función objetivo (cuyo valor es máximo para la mejor solución
posible al problema(, una función de costo (cuyo valor es mı́nimo para la mejor solución), una función de
utilidad (cuyo valor es máximo), una función de aptitud (también máximo) o una función de enerǵıa (para
la que se busca el mı́nimo). [50].

Un problema de optimización puede tener múltiples objetivos. Por ejemplo, puede ser necesario buscar
una función que calcule una reacción qúımica que genere la mayor cantidad de calor, pero que sea estable
en un ambiente determinado. Cualquiera de esas restricciones puede provocar que la otra cambie de forma
contraria a lo que se busca, por lo que puede resultar necesario combinarlas para buscar la solución óptima.
De la misma forma hay problemas de optimización para los que no existe una única solución, lo que hace
necesario escoger una o unas pocas con base en otros criterios.

En general los métodos de optimización pueden clasificarse en aquellos basados en el algoritmo Sim-
plex [12], en algoritmos iterativos, que buscan aproximar poco a poco una solución óptima y en ocasiones
dependen de un criterio de convergencia de la solución, o en algoritmos heuŕısticos, que dependen de expe-
riencias anteriores para guiar la búsqueda de una buena solución, si no es posible dar con la óptima.

Los problemas de optimización son muy frecuentes en áreas como la Ingenieŕıa, la Economı́a, la toma de
decisiones, y la modelación molecular.
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